-
Notifications
You must be signed in to change notification settings - Fork 6.4k
/
Copy pathknn.py
97 lines (84 loc) · 3.14 KB
/
knn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
# https://deeplearningcourses.com/c/data-science-supervised-machine-learning-in-python
# https://www.udemy.com/data-science-supervised-machine-learning-in-python
# This is an example of a K-Nearest Neighbors classifier on MNIST data.
# We try k=1...5 to show how we might choose the best k.
# sudo pip install sortedcontainers (if you don't have it)
from __future__ import print_function, division
from future.utils import iteritems
from builtins import range, input
# Note: you may need to update your version of future
# sudo pip install -U future
import numpy as np
import matplotlib.pyplot as plt
from sortedcontainers import SortedList
# Note: You can't use SortedDict because the key is distance
# if 2 close points are the same distance away, one will be overwritten
from util import get_data
from datetime import datetime
class KNN(object):
def __init__(self, k):
self.k = k
def fit(self, X, y):
self.X = X
self.y = y
def predict(self, X):
y = np.zeros(len(X))
for i,x in enumerate(X): # test points
sl = SortedList() # stores (distance, class) tuples
for j,xt in enumerate(self.X): # training points
diff = x - xt
d = diff.dot(diff)
if len(sl) < self.k:
# don't need to check, just add
sl.add( (d, self.y[j]) )
else:
if d < sl[-1][0]:
del sl[-1]
sl.add( (d, self.y[j]) )
# print "input:", x
# print "sl:", sl
# vote
votes = {}
for _, v in sl:
# print "v:", v
votes[v] = votes.get(v,0) + 1
# print "votes:", votes, "true:", Ytest[i]
max_votes = 0
max_votes_class = -1
for v,count in iteritems(votes):
if count > max_votes:
max_votes = count
max_votes_class = v
y[i] = max_votes_class
return y
def score(self, X, Y):
P = self.predict(X)
return np.mean(P == Y)
if __name__ == '__main__':
X, Y = get_data(2000)
Ntrain = 1000
Xtrain, Ytrain = X[:Ntrain], Y[:Ntrain]
Xtest, Ytest = X[Ntrain:], Y[Ntrain:]
train_scores = []
test_scores = []
ks = (1,2,3,4,5)
for k in ks:
print("\nk =", k)
knn = KNN(k)
t0 = datetime.now()
knn.fit(Xtrain, Ytrain)
print("Training time:", (datetime.now() - t0))
t0 = datetime.now()
train_score = knn.score(Xtrain, Ytrain)
train_scores.append(train_score)
print("Train accuracy:", train_score)
print("Time to compute train accuracy:", (datetime.now() - t0), "Train size:", len(Ytrain))
t0 = datetime.now()
test_score = knn.score(Xtest, Ytest)
print("Test accuracy:", test_score)
test_scores.append(test_score)
print("Time to compute test accuracy:", (datetime.now() - t0), "Test size:", len(Ytest))
plt.plot(ks, train_scores, label='train scores')
plt.plot(ks, test_scores, label='test scores')
plt.legend()
plt.show()