-
Notifications
You must be signed in to change notification settings - Fork 6.4k
/
Copy pathknn_fail.py
43 lines (36 loc) · 1.06 KB
/
knn_fail.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
# https://deeplearningcourses.com/c/data-science-supervised-machine-learning-in-python
# https://www.udemy.com/data-science-supervised-machine-learning-in-python
from __future__ import print_function, division
from future.utils import iteritems
from builtins import range, input
# Note: you may need to update your version of future
# sudo pip install -U future
import numpy as np
import matplotlib.pyplot as plt
from knn import KNN
def get_data():
width = 8
height = 8
N = width * height
X = np.zeros((N, 2))
Y = np.zeros(N)
n = 0
start_t = 0
for i in range(width):
t = start_t
for j in range(height):
X[n] = [i, j]
Y[n] = t
n += 1
t = (t + 1) % 2 # alternate between 0 and 1
start_t = (start_t + 1) % 2
return X, Y
if __name__ == '__main__':
X, Y = get_data()
# display the data
plt.scatter(X[:,0], X[:,1], s=100, c=Y, alpha=0.5)
plt.show()
# get the accuracy
model = KNN(3)
model.fit(X, Y)
print("Train accuracy:", model.score(X, Y))