-
Notifications
You must be signed in to change notification settings - Fork 6.4k
/
Copy pathkmeans_fail.py
55 lines (40 loc) · 1.55 KB
/
kmeans_fail.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
# https://deeplearningcourses.com/c/cluster-analysis-unsupervised-machine-learning-python
# https://www.udemy.com/cluster-analysis-unsupervised-machine-learning-python
from __future__ import print_function, division
from future.utils import iteritems
from builtins import range, input
# Note: you may need to update your version of future
# sudo pip install -U future
import numpy as np
from kmeans import plot_k_means
def donut():
N = 1000
D = 2
R_inner = 5
R_outer = 10
# distance from origin is radius + random normal
# angle theta is uniformly distributed between (0, 2pi)
R1 = np.random.randn(N//2) + R_inner
theta = 2*np.pi*np.random.random(N//2)
X_inner = np.concatenate([[R1 * np.cos(theta)], [R1 * np.sin(theta)]]).T
R2 = np.random.randn(N//2) + R_outer
theta = 2*np.pi*np.random.random(N//2)
X_outer = np.concatenate([[R2 * np.cos(theta)], [R2 * np.sin(theta)]]).T
X = np.concatenate([ X_inner, X_outer ])
return X
def main():
# donut
X = donut()
plot_k_means(X, 2, beta=0.1, show_plots=True)
# elongated clusters
X = np.zeros((1000, 2))
X[:500,:] = np.random.multivariate_normal([0, 0], [[1, 0], [0, 20]], 500)
X[500:,:] = np.random.multivariate_normal([5, 0], [[1, 0], [0, 20]], 500)
plot_k_means(X, 2, beta=0.1, show_plots=True)
# different density
X = np.zeros((1000, 2))
X[:950,:] = np.array([0,0]) + np.random.randn(950, 2)
X[950:,:] = np.array([3,0]) + np.random.randn(50, 2)
plot_k_means(X, 2, show_plots=True)
if __name__ == '__main__':
main()