-
Notifications
You must be signed in to change notification settings - Fork 6.4k
/
Copy pathtweets.py
201 lines (152 loc) · 5.07 KB
/
tweets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
# https://deeplearningcourses.com/c/cluster-analysis-unsupervised-machine-learning-python
# https://www.udemy.com/cluster-analysis-unsupervised-machine-learning-python
# data from https://www.kaggle.com/benhamner/clinton-trump-tweets
from __future__ import print_function, division
from builtins import range
# Note: you may need to update your version of future
# sudo pip install -U future
import re
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from scipy.spatial.distance import pdist
from scipy.cluster.hierarchy import dendrogram, linkage, fcluster
from sklearn.feature_extraction.text import TfidfVectorizer
# from sklearn.metrics.pairwise import pairwise_distances ### fast, but result not symmetric
# load stopwords
# selected after observing results without stopwords
stopwords = [
'the',
'about',
'an',
'and',
'are',
'at',
'be',
'can',
'for',
'from',
'if',
'in',
'is',
'it',
'of',
'on',
'or',
'that',
'this',
'to',
'you',
'your',
'with',
]
# find urls and twitter usernames within a string
url_finder = re.compile(r"(?:\@|https?\://)\S+")
def filter_tweet(s):
s = s.lower() # downcase
s = url_finder.sub("", s) # remove urls and usernames
return s
### load data ###
df = pd.read_csv('../large_files/tweets.csv')
text = df.text.tolist()
text = [filter_tweet(s) for s in text]
# transform the text into a data matrix
tfidf = TfidfVectorizer(max_features=100, stop_words=stopwords)
X = tfidf.fit_transform(text).asformat('array')
# subsample for efficiency
# remember: calculating distances is O(N^2)
N = X.shape[0]
idx = np.random.choice(N, size=2000, replace=False)
x = X[idx]
labels = df.handle[idx].tolist()
# proportions of each label
# so we can be confident that each is represented equally
pTrump = sum(1.0 if e == 'realDonaldTrump' else 0.0 for e in labels) / len(labels)
print("proportion @realDonaldTrump: %.3f" % pTrump)
print("proportion @HillaryClinton: %.3f" % (1 - pTrump))
# transform the data matrix into pairwise distances list
dist_array = pdist(x)
# calculate hierarchy
Z = linkage(dist_array, 'ward')
plt.title("Ward")
dendrogram(Z, labels=labels)
plt.show()
### hits max recursion depth
# Z = linkage(dist_array, 'single')
# plt.title("Single")
# dendrogram(Z, labels=labels)
# plt.show()
# Z = linkage(dist_array, 'complete')
# plt.title("Complete")
# dendrogram(Z, labels=labels)
# plt.show()
# convert labels to (1, 2), not (0, 1)
# since that's what's returned by fcluster
Y = np.array([1 if e == 'realDonaldTrump' else 2 for e in labels])
# get cluster assignments
# threshold 9 was chosen empirically to yield 2 clusters
C = fcluster(Z, 9, criterion='distance') # returns 1, 2, ..., K
categories = set(C)
# sanity check: should be {1, 2}
print("values in C:", categories)
### calculate the purity of our clusters ###
def purity(true_labels, cluster_assignments, categories):
# maximum purity is 1, higher is better
N = len(true_labels)
total = 0.0
for k in categories:
max_intersection = 0
for j in categories:
intersection = ((cluster_assignments == k) & (true_labels == j)).sum()
if intersection > max_intersection:
max_intersection = intersection
total += max_intersection
return total / N
print("purity:", purity(Y, C, categories))
# we know the smaller cluster is the trump cluster
#
# important note: we call it the trump cluster from
# observing AFTER the fact that most tweets in this
# cluster are by trump
# we do NOT use those labels to create the cluster
#
# we create the clusters using a distance-based
# algorithm which knows nothing about the labels,
# just the tf-idf scores.
#
# it just so happens that most of the tweets in
# one of the clusters is by trump, and that this
# cluster is very small
if (C == 1).sum() < (C == 2).sum():
d = 1
h = 2
else:
d = 2
h = 1
actually_donald = ((C == d) & (Y == 1)).sum()
donald_cluster_size = (C == d).sum()
print("purity of @realDonaldTrump cluster:", float(actually_donald) / donald_cluster_size)
actually_hillary = ((C == h) & (Y == 2)).sum()
hillary_cluster_size = (C == h).sum()
print("purity of @HillaryClinton cluster:", float(actually_hillary) / hillary_cluster_size)
# just for interest, how would a classifier do?
# note: classification is always easier
from sklearn.ensemble import RandomForestClassifier
rf = RandomForestClassifier()
rf.fit(X, df.handle)
print("classifier score:", rf.score(X, df.handle))
# same as mnist
# classifier yields almost 100% accuracy
# but purity of clustering is much lower
# what words have the highest tf-idf in cluster 1? in cluster 2?
w2i = tfidf.vocabulary_
# tf-idf vectorizer todense() returns a matrix rather than array
# matrix always wants to be 2-D, so we convert to array in order to flatten
d_avg = np.array(x[C == d].mean(axis=0)).flatten()
d_sorted = sorted(w2i.keys(), key=lambda w: -d_avg[w2i[w]])
print("\nTop 10 'Donald cluster' words:")
print("\n".join(d_sorted[:10]))
h_avg = np.array(x[C == h].mean(axis=0)).flatten()
h_sorted = sorted(w2i.keys(), key=lambda w: -h_avg[w2i[w]])
print("\nTop 10 'Hillary cluster' words:")
print("\n".join(h_sorted[:10]))