-
Notifications
You must be signed in to change notification settings - Fork 6.4k
/
Copy pathsk_mlp.py
33 lines (24 loc) · 829 Bytes
/
sk_mlp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
# https://deeplearningcourses.com/c/data-science-deep-learning-in-theano-tensorflow
# https://www.udemy.com/data-science-deep-learning-in-theano-tensorflow
from __future__ import print_function, division
from future.utils import iteritems
from builtins import range, input
# Note: you may need to update your version of future
# sudo pip install -U future
import numpy as np
from sklearn.neural_network import MLPRegressor
from util import getKaggleMNIST
# get data
X, _, Xt, _ = getKaggleMNIST()
# create the model and train it
model = MLPRegressor()
model.fit(X, X)
# test the model
print("Train R^2:", model.score(X, X))
print("Test R^2:", model.score(Xt, Xt))
Xhat = model.predict(X)
mse = ((Xhat - X)**2).mean()
print("Train MSE:", mse)
Xhat = model.predict(Xt)
mse = ((Xhat - Xt)**2).mean()
print("Test MSE:", mse)