-
Notifications
You must be signed in to change notification settings - Fork 6.4k
/
Copy pathunsupervised.py
152 lines (122 loc) · 4.82 KB
/
unsupervised.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
# https://deeplearningcourses.com/c/unsupervised-deep-learning-in-python
# https://www.udemy.com/unsupervised-deep-learning-in-python
from __future__ import print_function, division
from builtins import range
# Note: you may need to update your version of future
# sudo pip install -U future
import numpy as np
import theano
import theano.tensor as T
import matplotlib.pyplot as plt
from sklearn.utils import shuffle
from sklearn.manifold import TSNE
from sklearn.decomposition import PCA
from theano.tensor.shared_randomstreams import RandomStreams
from util import relu, error_rate, getKaggleMNIST, init_weights
from autoencoder import AutoEncoder, momentum_updates
from rbm import RBM
class DBN(object):
def __init__(self, hidden_layer_sizes, UnsupervisedModel=AutoEncoder):
self.hidden_layers = []
count = 0
for M in hidden_layer_sizes:
ae = UnsupervisedModel(M, count)
self.hidden_layers.append(ae)
count += 1
def fit(self, X, pretrain_epochs=1):
self.D = X.shape[1] # save for later
current_input = X
for ae in self.hidden_layers:
ae.fit(current_input, epochs=pretrain_epochs)
# create current_input for the next layer
current_input = ae.hidden_op(current_input)
# return it here so we can use directly after fitting without calling forward
return current_input
def forward(self, X):
Z = X
for ae in self.hidden_layers:
Z = ae.forward_hidden(Z)
return Z
def fit_to_input(self, k, learning_rate=1.0, mu=0.99, epochs=100000):
# This is not very flexible, as you would ideally
# like to be able to activate any node in any hidden
# layer, not just the last layer.
# Exercise for students: modify this function to be able
# to activate neurons in the middle layers.
# cast hyperperams
learning_rate = np.float32(learning_rate)
mu = np.float32(mu)
# randomly initialize an image
X0 = init_weights((1, self.D))
# make the image a shared so theano can update it
X = theano.shared(X0, 'X_shared')
# get the output of the neural network
Y = self.forward(X)
# t = np.zeros(self.hidden_layers[-1].M)
# t[k] = 1
# # choose Y[0] b/c it's shape 1xD, we want just a D-size vector, not 1xD matrix
# cost = -(t*T.log(Y[0]) + (1 - t)*(T.log(1 - Y[0]))).sum()
# k = which output node to look at
# there is only 1 image, so we select the 0th row of X
cost = -T.log(Y[0,k])
updates = momentum_updates(cost, [X], mu, learning_rate)
train = theano.function(
inputs=[],
outputs=[cost, Y],
updates=updates,
)
costs = []
for i in range(epochs):
if i % 10000 == 0:
print("epoch:", i)
the_cost, out = train()
if i == 0:
print("out.shape:", out.shape)
costs.append(the_cost)
plt.plot(costs)
plt.show()
return X.get_value()
def save(self, filename):
arrays = [p.get_value() for layer in self.hidden_layers for p in layer.params]
np.savez(filename, *arrays)
@staticmethod
def load(filename, UnsupervisedModel=AutoEncoder):
dbn = DBN([], UnsupervisedModel)
npz = np.load(filename)
dbn.hidden_layers = []
count = 0
for i in range(0, len(npz.files), 3):
W = npz['arr_%s' % i]
bh = npz['arr_%s' % (i + 1)]
bo = npz['arr_%s' % (i + 2)]
if i == 0:
dbn.D = W.shape[0]
ae = UnsupervisedModel.createFromArrays(W, bh, bo, count)
dbn.hidden_layers.append(ae)
count += 1
return dbn
def main():
Xtrain, Ytrain, Xtest, Ytest = getKaggleMNIST()
dbn = DBN([1000, 750, 500], UnsupervisedModel=AutoEncoder)
# dbn = DBN([1000, 750, 500, 10])
output = dbn.fit(Xtrain, pretrain_epochs=2)
print("output.shape", output.shape)
# sample before using t-SNE because it requires lots of RAM
sample_size = 600
tsne = TSNE()
reduced = tsne.fit_transform(output[:sample_size])
plt.scatter(reduced[:,0], reduced[:,1], s=100, c=Ytrain[:sample_size], alpha=0.5)
plt.title("t-SNE visualization on data transformed by DBN")
plt.show()
# t-SNE on raw data
reduced = tsne.fit_transform(Xtrain[:sample_size])
plt.scatter(reduced[:,0], reduced[:,1], s=100, c=Ytrain[:sample_size], alpha=0.5)
plt.title("t-SNE visualization on raw data")
plt.show()
pca = PCA()
reduced = pca.fit_transform(output)
plt.scatter(reduced[:,0], reduced[:,1], s=100, c=Ytrain, alpha=0.5)
plt.title("PCA visualization on data transformed by DBN")
plt.show()
if __name__ == '__main__':
main()