forked from hhk7734/tensorflow-yolov4
-
Notifications
You must be signed in to change notification settings - Fork 0
/
CHANGELOG
343 lines (253 loc) · 12.3 KB
/
CHANGELOG
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
tensorflow-yolov4 (2.0.1) unstable; urgency=medium
* tf: set memory growth to True when using GPU
* model: head: correct line ending
* tf: add **kwargs parameter to compile() and fit()
* tf: fix strange ground truth values issue
-- Hyeonki Hong <[email protected]> Sat, 05 Dec 2020 18:26:08 +0900
tensorflow-yolov4 (2.0.0) unstable; urgency=medium
* tf:dataset: add data format check
* common: base_class: change input_size from integer to (width, height)
* common: base_class: set default arguments for candidates_to_pred_bboxes
* tf: dataset: modify variable initialization according to input_size type change
* common: predict: reflect input_size type change
* common: media: reflect input_size type change to resize_image
* tf:dataset: reflect input_size type change to data augmentation
* common: base_class: reflect predict.fit_pred_bboxes_to_original change
* common: predict: fix problem that occurred because image size change was not considered
* tf: reflect input_size type change
* model: head: reflect input_size type change
* tf: train: reflect input_size type change
* common: base_class: change strides to immutable constant
* common: base_class: add cap.release() to release resources
* tflite: reflect input_size type change
* tf: optimize predict() using @tf.function
* common: predict: fix problem caused by incorrect iou calculation
-- Hyeonki Hong <[email protected]> Tue, 27 Oct 2020 00:11:59 +0900
tensorflow-yolov4 (1.2.1) unstable; urgency=medium
* tf: set num_sample to the number of dataset, if not specified
* tf: modify to bring images in order on post-training
* common: base_class: add iou/score_threshold argument
* tf: add images_optional argument in save_dataset_for_mAP()
* common: base_class: modify to call cv2.namedWindow once
* common: media: modify to create colors once
* tf: dataset: update docs
-- Hyeonki Hong <[email protected]> Fri, 04 Sep 2020 20:21:56 +0900
tensorflow-yolov4 (1.2.0) unstable; urgency=medium
* model: remove tpu argument
* tf: reflect model changes
* tflite: remove tpu_hair
* tf, tflite: move inference into BaseClass
* model: yolov4: remove unused import
* pylint: update .pylintrc
* common: base_class: modify inference() to be able to use cam
* common: base_class: add fps display to screen
-- Hyeonki Hong <[email protected]> Tue, 11 Aug 2020 21:43:29 +0900
tensorflow-yolov4 (1.1.0) unstable; urgency=medium
* model: add kernel_regularizer argument
* tf: remove subdivision
* tf: dataset: fix issue where coordinates become 0 due to repeated division
* tf: dataset: modify to shuffle when augmentation
* tf: train: modify order of declaration
* tf: train: give xiou_loss to more weight
* tf: train: use keras.losses.BinaryCrossentropy to avoid nan problem
* tf: train: add verbose argument
* tf: dataset: change converted_coco format
* tf: add image_path_prefix argument to load_dataset()
* tf: add loss_verbose argument to compile()
* tf: reflect dataset format change to save_dataset_for_mAP()
-- Hyeonki Hong <[email protected]> Mon, 10 Aug 2020 19:09:15 +0900
tensorflow-yolov4 (1.0.0) unstable; urgency=medium
* tf: dataset: add `label smooting` argument
* tf: add label_smooting argument to load_dataset()
* tf: train: set truth_conf threshold to 0.5 because of label smoothing
-- Hyeonki Hong <[email protected]> Wed, 05 Aug 2020 13:05:02 +0900
tensorflow-yolov4 (0.24.0) unstable; urgency=medium
* tf: set default num of sample for mAP to 1000
* tf: fix error handling when image is empty
-- Hyeonki Hong <[email protected]> Tue, 04 Aug 2020 12:40:25 +0900
tensorflow-yolov4 (0.23.0) unstable; urgency=medium
* tf: dataset: add error handling when bboxes are empty
* common: media: replace space of class name to underbar
* tf: implement save_dataset_for_mAP()
* tf: dataset: add error handling when image is empty
-- Hyeonki Hong <[email protected]> Mon, 03 Aug 2020 20:49:51 +0900
tensorflow-yolov4 (0.22.0) unstable; urgency=medium
* tf: add TFLITE_BUILTINS, SELECT_TF_OPS to default supported_ops
* tf: dataset: modify to check if image exists when creating a dataset
* tf: dataset: remove preprocess_dataset
* tf: dataset: add cut_out
* tf: dataset: add _next_random_augmentation_data()
* tf: dataset: add mix_up
* tf: dataset: implement mosaic
-- Hyeonki Hong <[email protected]> Sun, 02 Aug 2020 17:22:43 +0900
tensorflow-yolov4 (0.21.0) unstable; urgency=medium
* tf: train: set epsilon used for division to 1e-8
* tf: train: add giou and iou to iou_type
* tf: train: fix loss function of bbox_probabilities
-- Hyeonki Hong <[email protected]> Thu, 30 Jul 2020 05:18:12 +0900
tensorflow-yolov4 (0.20.0) unstable; urgency=medium
* tf: train: modify epsilon to 1e-9
* tf: train: remove weight for conf_noobj_loss
* tf: add arguments to fit()
* tf: dataset: fix problem of not finding images
* tf: add SaveWeightsCallback
-- Hyeonki Hong <[email protected]> Wed, 29 Jul 2020 05:06:25 +0900
tensorflow-yolov4 (0.19.0) unstable; urgency=medium
* tf: weights: modify 'set' to 'load'
* tf: weights: implement *_save_weights
* tf: add save_weights()
-- Hyeonki Hong <[email protected]> Fri, 24 Jul 2020 06:22:14 +0900
tensorflow-yolov4 (0.18.0) unstable; urgency=medium
* yolov4: clarify batch number
* tf: remove by_name in load_weights
* tf: dataset: simplify code
* tf: dataset: fix problem of making a batch with same image
-- Hyeonki Hong <[email protected]> Thu, 23 Jul 2020 20:30:23 +0900
tensorflow-yolov4 (0.17.0) unstable; urgency=medium
* tf: dataset: fix index range for Tiny
* tf: remove expect_partial() in load_weights()
* tflite: fix issue with the number of outputs by model
* model: add tpu argument in Tiny
* tflite: add tpu argument
* utility: rename to common
* common: implement BaseClass
* tflite: add tensorflow.lite
* model: head: change dimension from 4D to 3D in Tiny
* tflite: add tpu_hair
* common: media: add type cast in resize_image
* tf: add num_calibration_steps argument in save_as_tflite
* common: base_class: move strides property from tf
* tf: set by_name to True in load_weights
Thanks to @RealHandy
-- Hyeonki Hong <[email protected]> Thu, 23 Jul 2020 15:43:08 +0900
tensorflow-yolov4 (0.16.0) unstable; urgency=medium
* tf: add tiny argument to __init__ and remove from others
-- Hyeonki Hong <[email protected]> Wed, 15 Jul 2020 13:21:12 +0900
tensorflow-yolov4 (0.15.0) unstable; urgency=medium
* tf: add quantization and data_set args to save_as_tflite
* utility: media: add string length check
* model: add activation args
* model: head: remove for loop
* model: backbone: implement CSPDarknet53Tiny
* model: neck: implement PANetTiny
* model: head: implement YOLOv3HeadTiny
* model: yolov4: implement YOLOv4Tiny
* tf: weights: implement *_tiny_* funcs
* tf: reflect YOLOv4Tiny
-- Hyeonki Hong <[email protected]> Wed, 15 Jul 2020 03:43:03 +0900
tensorflow-yolov4 (0.14.0) unstable; urgency=medium
* github: add python publish action
* model: neck: use bilinear in UpSampling2D
* test: update script
* tflite: refactor YOLOv4
* utility: predict: fix according to pylint warning
* pylint: update .pylintrc
* model: head: use tf.constant to avoid broadcasting
* github: add python lint action
-- Hyeonki Hong <[email protected]> Tue, 14 Jul 2020 02:14:12 +0900
tensorflow-yolov4 (0.13.0) unstable; urgency=medium
* tf: remove tensorboard callback
* tf: modify compile() and fit() to be similar to model
* yolov4: rename 'data' to 'test'
* utility: media: update docs and variable name
* utility: predict: remove batch_size
* utility: media: rename funcs
* tf: add utility funcs to YOLOv4 member funcs
* test: add test script
-- Hyeonki Hong <[email protected]> Mon, 13 Jul 2020 13:36:32 +0900
tensorflow-yolov4 (0.12.0) unstable; urgency=medium
* utility: train: refactor bbox_*iou and remove duplicate funcs
* yolov4: rename parameters
* yolov4: remove utils
* tf: add FileNotFoundError in YOLOv4.inference()
* utility: predict: add dimension for batch size
* pylint: update .pylintrc
* tf: add YOLOv4.save_as_tflite()
* model: clean up
* utility: weights: move to tf.weights
* utility: train: move to tf.train
* model: neck: implement PANet
* mdel: head: implement YOLOv3Head
* model: yolov4: Apply neck and head class
* yolov4: reflect model changes
* tf: dataset: add batch_size
* tf: train: implement YOLOv4Loss
* utility: media: modify rectangle thickness
* model: common: use softplus instead of ln(1+exp(x))
* tf: train: use epsilon instead of tf.math.divide_no_nan
* tf: refactor YOLOv4.fit() and .compile()
-- Hyeonki Hong <[email protected]> Sun, 12 Jul 2020 03:50:50 +0900
tensorflow-yolov4 (0.11.0) unstable; urgency=medium
* tf: remove utils.draw_bbox in predict()
* yolov4: rename files and functions and change order
* utility: utils: remove get_anchors()
* utility: media: impelment resize(), draw_bbox()
* utility: utils: implement DIoU_NMS
* utility: utils: fix dimensional calculation problems
* utility: refactor dataset
* tf: remove train
* utility: train: implement make_compiled_loss()
* utility: media: fix bug that could not resize some images
* utility: train: remove problem of division by zero
-- Hyeonki Hong <[email protected]> Mon, 29 Jun 2020 21:05:39 +0900
tensorflow-yolov4 (0.10.0) unstable; urgency=medium
* core: yolov4: refactor decode()
* core: utils: remove sigmoid in postprocess_bbboxe()
* tf: apply YOLOv4 changes to make_model()
* core: yolov4: move decode_train() to tf.YOLOv4.train()
-- Hyeonki Hong <[email protected]> Thu, 25 Jun 2020 00:48:44 +0900
tensorflow-yolov4 (0.9.0) unstable; urgency=medium
* tf: modify hyperparameters as properties
* tf: add weights_type argument to load_weights()
* core: utils: implement _np_fromfile()
* core: utils: implement a way to partially load weights
* tf: train: move learning_rate_* to argument
* core: move YOLOConv2D to common
* core: common: remove bn argument of YOLOConv2D
* core: utils: refactor yolo_conv2d_set_weights
* core: yolov4: refactor YOLOv4
* core: utils: refactor load_weights
* tf: refactor make_model
* yolov4: change YoloV4 to YOLOv4
-- Hyeonki Hong <[email protected]> Wed, 24 Jun 2020 02:58:27 +0900
tensorflow-yolov4 (0.8.0) unstable; urgency=medium
* core: use tf.keras.layers.UpSampling2D
* core: refactor Mish
* core: common: remove residual_block
* core: remove sequential in _ResBlock
* core: backbone: Set LeakyReLU's alpha to 0.1
-- Hyeonki Hong <[email protected]> Tue, 23 Jun 2020 02:21:01 +0900
tensorflow-yolov4 (0.7.0) unstable; urgency=medium
* tf: fix to proceed to the next step even if an error occurs
* tf: modify video_interval_ms to cv_waitKey_delay
* core: backbone: refactor CSPDarknet53
* core: utils: implement csp_darknet53_set_weights()
-- Hyeonki Hong <[email protected]> Mon, 22 Jun 2020 23:01:32 +0900
tensorflow-yolov4 (0.6.0) unstable; urgency=medium
* tf: set first_step_epochs according to the weight usage
* tf: fix syntax error
-- Hyeonki Hong <[email protected]> Fri, 19 Jun 2020 17:09:57 +0900
tensorflow-yolov4 (0.5.0) unstable; urgency=medium
* core: dataset: add yolo type
* tf: add dataset_type parameter to YoloV4.train
* tf: add epochs parameter to train
* tf: add save_interval parameter to train
-- Hyeonki Hong <[email protected]> Fri, 19 Jun 2020 14:30:50 +0900
tensorflow-yolov4 (0.4.0) unstable; urgency=medium
* core: dataset: remove cfg module
* tf: implement YoloV4.train
-- Hyeonki Hong <[email protected]> Thu, 11 Jun 2020 17:45:44 +0900
tensorflow-yolov4 (0.3.0) unstable; urgency=medium
* core: utils: use numpy instead of tensorflow
* pypi: remove install_requires and change to manual installation
* yolov4: add video_interval_ms
-- Hyeonki Hong <[email protected]> Mon, 08 Jun 2020 23:59:41 +0900
tensorflow-yolov4 (0.2.0) unstable; urgency=medium
* pylint: create .pylintrc and run black
* core: remove config.py
* yolov4: change tfyolov4 to yolov4
* yolov4: remove detect**.py and implement YoloV4.inference
-- Hyeonki Hong <[email protected]> Mon, 08 Jun 2020 02:20:49 +0900
tensorflow-yolov4 (0.1.0) unstable; urgency=medium
* yolov4: fork from 'hunglc007/tensorflow-yolov4-tflite'
-- Hyeonki Hong <[email protected]> Fri, 05 Jun 2020 20:17:45 +0900