forked from PaddlePaddle/PaddleNLP
-
Notifications
You must be signed in to change notification settings - Fork 0
/
utils.py
40 lines (35 loc) Β· 1.38 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
def default_trans_func(output, label, seq_mask, vocab):
seq_mask = np.expand_dims(seq_mask, axis=2).repeat(output.shape[2], axis=2)
output = output * seq_mask
idx = np.argmax(output, axis=2)
cand, ref_list = [], []
for i in range(idx.shape[0]):
token_list = []
for j in range(idx.shape[1]):
if seq_mask[i][j][0] == 0:
break
token_list.append(vocab[idx[i][j]])
cand.append(token_list)
label = np.squeeze(label, axis=2)
for i in range(label.shape[0]):
token_list = []
for j in range(label.shape[1]):
if seq_mask[i][j][0] == 0:
break
token_list.append(vocab[label[i][j]])
ref_list.append([token_list])
return cand, ref_list