-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinverse_kinematics.py
245 lines (210 loc) · 8.02 KB
/
inverse_kinematics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
##############################
#
# https://github.com/PeizhuoLi/ganimator/blob/main/models/kinematics.py
#
##############################
import torch
import torch.nn.functional as F
from Motion.transforms import quat2mat, repr6d2mat, euler2mat
class ForwardKinematics:
def __init__(self, parents, offsets=None):
self.parents = parents
if offsets is not None and len(offsets.shape) == 2:
offsets = offsets.unsqueeze(0)
self.offsets = offsets
def forward(self, rots, offsets=None, global_pos=None):
"""
Forward Kinematics: returns a per-bone transformation
@param rots: local joint rotations (batch_size, bone_num, 3, 3)
@param offsets: (batch_size, bone_num, 3) or None
@param global_pos: global_position: (batch_size, 3) or keep it as in offsets (default)
@return: (batch_szie, bone_num, 3, 4)
"""
rots = rots.clone()
if offsets is None:
offsets = self.offsets.to(rots.device)
if global_pos is None:
global_pos = offsets[:, 0]
pos = torch.zeros((rots.shape[0], rots.shape[1], 3), device=rots.device)
rest_pos = torch.zeros_like(pos)
res = torch.zeros((rots.shape[0], rots.shape[1], 3, 4), device=rots.device)
pos[:, 0] = global_pos
rest_pos[:, 0] = offsets[:, 0]
for i, p in enumerate(self.parents):
if i != 0:
rots[:, i] = torch.matmul(rots[:, p], rots[:, i])
pos[:, i] = (
torch.matmul(rots[:, p], offsets[:, i].unsqueeze(-1)).squeeze(-1)
+ pos[:, p]
)
rest_pos[:, i] = rest_pos[:, p] + offsets[:, i]
res[:, i, :3, :3] = rots[:, i]
res[:, i, :, 3] = (
torch.matmul(rots[:, i], -rest_pos[:, i].unsqueeze(-1)).squeeze(-1)
+ pos[:, i]
)
return res
def accumulate(self, local_rots):
"""
Get global joint rotation from local rotations
@param local_rots: (batch_size, n_bone, 3, 3)
@return: global_rotations
"""
res = torch.empty_like(local_rots)
for i, p in enumerate(self.parents):
if i == 0:
res[:, i] = local_rots[:, i]
else:
res[:, i] = torch.matmul(res[:, p], local_rots[:, i])
return res
def unaccumulate(self, global_rots):
"""
Get local joint rotation from global rotations
@param global_rots: (batch_size, n_bone, 3, 3)
@return: local_rotations
"""
res = torch.empty_like(global_rots)
inv = torch.empty_like(global_rots)
for i, p in enumerate(self.parents):
if i == 0:
inv[:, i] = global_rots[:, i].transpose(-2, -1)
res[:, i] = global_rots[:, i]
continue
res[:, i] = torch.matmul(inv[:, p], global_rots[:, i])
inv[:, i] = torch.matmul(res[:, i].transpose(-2, -1), inv[:, p])
return res
class ForwardKinematicsJoint:
def __init__(self, parents, offset):
self.parents = parents
self.offset = offset
"""
rotation should have shape batch_size * Joint_num * (3/4) * Time
position should have shape batch_size * 3 * Time
offset should have shape batch_size * Joint_num * 3
output have shape batch_size * Time * Joint_num * 3
"""
def forward(
self, rotation: torch.Tensor, position: torch.Tensor, offset=None, world=True
):
"""
if not quater and rotation.shape[-2] != 3: raise Exception('Unexpected shape of rotation')
if quater and rotation.shape[-2] != 4: raise Exception('Unexpected shape of rotation')
rotation = rotation.permute(0, 3, 1, 2)
position = position.permute(0, 2, 1)
"""
if rotation.shape[-1] == 6:
transform = repr6d2mat(rotation)
elif rotation.shape[-1] == 4:
rotation = F.normalize(rotation, dim=-1)
transform = quat2mat(rotation)
elif rotation.shape[-1] == 3:
transform = euler2mat(rotation)
else:
raise Exception("Only accept quaternion rotation input")
result = torch.empty(transform.shape[:-2] + (3,), device=position.device)
if offset is None:
offset = self.offset
offset = offset.reshape((-1, 1, offset.shape[-2], offset.shape[-1], 1))
result[..., 0, :] = position
for i, pi in enumerate(self.parents):
if pi == -1:
assert i == 0
continue
result[..., i, :] = torch.matmul(
transform[..., pi, :, :], offset[..., i, :, :]
).squeeze(-1)
transform[..., i, :, :] = torch.matmul(
transform[..., pi, :, :].clone(), transform[..., i, :, :].clone()
)
if world:
result[..., i, :] += result[..., pi, :]
return result
class InverseKinematicsJoint:
def __init__(
self,
rotations: torch.Tensor,
positions: torch.Tensor,
offset,
parents,
constrains,
):
self.rotations = rotations.detach().clone()
self.rotations.requires_grad_(True)
self.position = positions.detach().clone()
self.position.requires_grad_(True)
self.parents = parents
self.offset = offset
self.constrains = constrains
self.optimizer = torch.optim.Adam(
[self.position, self.rotations], lr=1e-3, betas=(0.9, 0.999)
)
self.criteria = torch.nn.MSELoss()
self.fk = ForwardKinematicsJoint(parents, offset)
self.glb = None
def step(self):
self.optimizer.zero_grad()
glb = self.fk.forward(self.rotations, self.position)
loss = self.criteria(glb, self.constrains)
loss.backward()
self.optimizer.step()
self.glb = glb
return loss.item()
class InverseKinematicsJoint2:
def __init__(
self,
rotations: torch.Tensor,
positions: torch.Tensor,
offset,
parents,
constrains,
cid,
lambda_rec_rot=1.0,
lambda_rec_pos=1.0,
use_velo=False,
):
self.use_velo = use_velo
self.rotations_ori = rotations.detach().clone()
self.rotations = rotations.detach().clone()
self.rotations.requires_grad_(True)
self.position_ori = positions.detach().clone()
self.position = positions.detach().clone()
if self.use_velo:
self.position[1:] = self.position[1:] - self.position[:-1]
self.position.requires_grad_(True)
self.parents = parents
self.offset = offset
self.constrains = constrains.detach().clone()
self.cid = cid
self.lambda_rec_rot = lambda_rec_rot
self.lambda_rec_pos = lambda_rec_pos
self.optimizer = torch.optim.Adam(
[self.position, self.rotations], lr=1e-3, betas=(0.9, 0.999)
)
self.criteria = torch.nn.MSELoss()
self.fk = ForwardKinematicsJoint(parents, offset)
self.glb = None
def step(self):
self.optimizer.zero_grad()
if self.use_velo:
position = torch.cumsum(self.position, dim=0)
else:
position = self.position
glb = self.fk.forward(self.rotations, position)
self.constrain_loss = self.criteria(glb[:, self.cid], self.constrains)
self.rec_loss_rot = self.criteria(self.rotations, self.rotations_ori)
self.rec_loss_pos = self.criteria(self.position, self.position_ori)
loss = (
self.constrain_loss
+ self.rec_loss_rot * self.lambda_rec_rot
+ self.rec_loss_pos * self.lambda_rec_pos
)
loss.backward()
self.optimizer.step()
self.glb = glb
return loss.item()
def get_position(self):
if self.use_velo:
position = torch.cumsum(self.position.detach(), dim=0)
else:
position = self.position.detach()
return position