forked from SkyTNT/midi-model
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
264 lines (233 loc) · 12.1 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
import argparse
import glob
import json
import gradio as gr
import numpy as np
import torch
import torch.nn.functional as F
import tqdm
import MIDI
from midi_model import MIDIModel
from midi_tokenizer import MIDITokenizer
from midi_synthesizer import synthesis
from huggingface_hub import hf_hub_download
@torch.inference_mode()
def generate(prompt=None, max_len=512, temp=1.0, top_p=0.98, top_k=20,
disable_patch_change=False, disable_control_change=False, disable_channels=None, amp=True):
if disable_channels is not None:
disable_channels = [tokenizer.parameter_ids["channel"][c] for c in disable_channels]
else:
disable_channels = []
max_token_seq = tokenizer.max_token_seq
if prompt is None:
input_tensor = torch.full((1, max_token_seq), tokenizer.pad_id, dtype=torch.long, device=model.device)
input_tensor[0, 0] = tokenizer.bos_id # bos
else:
prompt = prompt[:, :max_token_seq]
if prompt.shape[-1] < max_token_seq:
prompt = np.pad(prompt, ((0, 0), (0, max_token_seq - prompt.shape[-1])),
mode="constant", constant_values=tokenizer.pad_id)
input_tensor = torch.from_numpy(prompt).to(dtype=torch.long, device=model.device)
input_tensor = input_tensor.unsqueeze(0)
cur_len = input_tensor.shape[1]
bar = tqdm.tqdm(desc="generating", total=max_len - cur_len)
with bar, torch.cuda.amp.autocast(enabled=amp):
while cur_len < max_len:
end = False
hidden = model.forward(input_tensor)[0, -1].unsqueeze(0)
next_token_seq = None
event_name = ""
for i in range(max_token_seq):
mask = torch.zeros(tokenizer.vocab_size, dtype=torch.int64, device=model.device)
if i == 0:
mask_ids = list(tokenizer.event_ids.values()) + [tokenizer.eos_id]
if disable_patch_change:
mask_ids.remove(tokenizer.event_ids["patch_change"])
if disable_control_change:
mask_ids.remove(tokenizer.event_ids["control_change"])
mask[mask_ids] = 1
else:
param_name = tokenizer.events[event_name][i - 1]
mask_ids = tokenizer.parameter_ids[param_name]
if param_name == "channel":
mask_ids = [i for i in mask_ids if i not in disable_channels]
mask[mask_ids] = 1
logits = model.forward_token(hidden, next_token_seq)[:, -1:]
scores = torch.softmax(logits / temp, dim=-1) * mask
sample = model.sample_top_p_k(scores, top_p, top_k)
if i == 0:
next_token_seq = sample
eid = sample.item()
if eid == tokenizer.eos_id:
end = True
break
event_name = tokenizer.id_events[eid]
else:
next_token_seq = torch.cat([next_token_seq, sample], dim=1)
if len(tokenizer.events[event_name]) == i:
break
if next_token_seq.shape[1] < max_token_seq:
next_token_seq = F.pad(next_token_seq, (0, max_token_seq - next_token_seq.shape[1]),
"constant", value=tokenizer.pad_id)
next_token_seq = next_token_seq.unsqueeze(1)
input_tensor = torch.cat([input_tensor, next_token_seq], dim=1)
cur_len += 1
bar.update(1)
yield next_token_seq.reshape(-1).cpu().numpy()
if end:
break
def create_msg(name, data):
return {"name": name, "data": data}
def run(tab, instruments, drum_kit, mid, midi_events, gen_events, temp, top_p, top_k, allow_cc, amp):
mid_seq = []
gen_events = int(gen_events)
max_len = gen_events
disable_patch_change = False
disable_channels = None
if tab == 0:
i = 0
mid = [[tokenizer.bos_id] + [tokenizer.pad_id] * (tokenizer.max_token_seq - 1)]
patches = {}
for instr in instruments:
patches[i] = patch2number[instr]
i = (i + 1) if i != 8 else 10
if drum_kit != "None":
patches[9] = drum_kits2number[drum_kit]
for i, (c, p) in enumerate(patches.items()):
mid.append(tokenizer.event2tokens(["patch_change", 0, 0, i, c, p]))
mid_seq = mid
mid = np.asarray(mid, dtype=np.int64)
if len(instruments) > 0:
disable_patch_change = True
disable_channels = [i for i in range(16) if i not in patches]
elif mid is not None:
mid = tokenizer.tokenize(MIDI.midi2score(mid))
mid = np.asarray(mid, dtype=np.int64)
mid = mid[:int(midi_events)]
max_len += len(mid)
for token_seq in mid:
mid_seq.append(token_seq.tolist())
init_msgs = [create_msg("visualizer_clear", None)]
for tokens in mid_seq:
init_msgs.append(create_msg("visualizer_append", tokenizer.tokens2event(tokens)))
yield mid_seq, None, None, init_msgs
generator = generate(mid, max_len=max_len, temp=temp, top_p=top_p, top_k=top_k,
disable_patch_change=disable_patch_change, disable_control_change=not allow_cc,
disable_channels=disable_channels, amp=amp)
for i, token_seq in enumerate(generator):
mid_seq.append(token_seq)
event = tokenizer.tokens2event(token_seq.tolist())
yield mid_seq, None, None, [create_msg("visualizer_append", event), create_msg("progress", [i + 1, gen_events])]
mid = tokenizer.detokenize(mid_seq)
with open(f"output.mid", 'wb') as f:
f.write(MIDI.score2midi(mid))
audio = synthesis(MIDI.score2opus(mid), soundfont_path)
yield mid_seq, "output.mid", (44100, audio), [create_msg("visualizer_end", None)]
def cancel_run(mid_seq):
mid = tokenizer.detokenize(mid_seq)
with open(f"output.mid", 'wb') as f:
f.write(MIDI.score2midi(mid))
audio = synthesis(MIDI.score2opus(mid), soundfont_path)
return "output.mid", (44100, audio), [create_msg("visualizer_end", None)]
def load_model(path):
ckpt = torch.load(path, map_location="cpu")
state_dict = ckpt.get("state_dict", ckpt)
model.load_state_dict(state_dict, strict=False)
model.eval()
return "success"
def get_model_path():
model_paths = sorted(glob.glob("**/*.ckpt", recursive=True))
return model_path_input.update(choices=model_paths)
def load_javascript(dir="javascript"):
scripts_list = glob.glob(f"{dir}/*.js")
javascript = ""
for path in scripts_list:
with open(path, "r", encoding="utf8") as jsfile:
javascript += f"\n<!-- {path} --><script>{jsfile.read()}</script>"
template_response_ori = gr.routes.templates.TemplateResponse
def template_response(*args, **kwargs):
res = template_response_ori(*args, **kwargs)
res.body = res.body.replace(
b'</head>', f'{javascript}</head>'.encode("utf8"))
res.init_headers()
return res
gr.routes.templates.TemplateResponse = template_response
class JSMsgReceiver(gr.HTML):
def __init__(self, **kwargs):
super().__init__(elem_id="msg_receiver", visible=False, **kwargs)
def postprocess(self, y):
if y:
y = f"<p>{json.dumps(y)}</p>"
return super().postprocess(y)
def get_block_name(self) -> str:
return "html"
number2drum_kits = {-1: "None", 0: "Standard", 8: "Room", 16: "Power", 24: "Electric", 25: "TR-808", 32: "Jazz",
40: "Blush", 48: "Orchestra"}
patch2number = {v: k for k, v in MIDI.Number2patch.items()}
drum_kits2number = {v: k for k, v in number2drum_kits.items()}
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--port", type=int, default=7860, help="gradio server port")
parser.add_argument("--device", type=str, default="cuda", help="device to run model")
soundfont_path = hf_hub_download(repo_id="skytnt/midi-model", filename="soundfont.sf2")
opt = parser.parse_args()
tokenizer = MIDITokenizer()
model = MIDIModel(tokenizer).to(device=opt.device)
load_javascript()
app = gr.Blocks()
with app:
js_msg = JSMsgReceiver()
with gr.Accordion(label="Model option", open=False):
load_model_path_btn = gr.Button("Get Models")
model_path_input = gr.Dropdown(label="model")
load_model_path_btn.click(get_model_path, [], model_path_input)
load_model_btn = gr.Button("Load")
model_msg = gr.Textbox()
load_model_btn.click(
load_model, model_path_input, model_msg
)
tab_select = gr.Variable(value=0)
with gr.Tabs():
with gr.TabItem("instrument prompt") as tab1:
input_instruments = gr.Dropdown(label="instruments (auto if empty)", choices=list(patch2number.keys()),
multiselect=True, max_choices=15, type="value")
input_drum_kit = gr.Dropdown(label="drum kit", choices=list(drum_kits2number.keys()), type="value",
value="None")
example1 = gr.Examples([
[[], "None"],
[["Acoustic Grand"], "None"],
[["Acoustic Grand", "Violin", "Viola", "Cello", "Contrabass"], "Orchestra"],
[["Flute", "Cello", "Bassoon", "Tuba"], "None"],
[["Violin", "Viola", "Cello", "Contrabass", "Trumpet", "French Horn", "Brass Section",
"Flute", "Piccolo", "Tuba", "Trombone", "Timpani"], "Orchestra"],
[["Acoustic Guitar(nylon)", "Acoustic Guitar(steel)", "Electric Guitar(jazz)",
"Electric Guitar(clean)", "Electric Guitar(muted)", "Overdriven Guitar", "Distortion Guitar",
"Electric Bass(finger)"], "Standard"]
], [input_instruments, input_drum_kit])
with gr.TabItem("midi prompt") as tab2:
input_midi = gr.File(label="input midi", file_types=[".midi", ".mid"], type="binary")
input_midi_events = gr.Slider(label="use first n midi events as prompt", minimum=1, maximum=512,
step=1,
value=128)
tab1.select(lambda: 0, None, tab_select, queue=False)
tab2.select(lambda: 1, None, tab_select, queue=False)
input_gen_events = gr.Slider(label="generate n midi events", minimum=1, maximum=4096, step=1, value=512)
with gr.Accordion("options", open=False):
input_temp = gr.Slider(label="temperature", minimum=0.1, maximum=1.2, step=0.01, value=1)
input_top_p = gr.Slider(label="top p", minimum=0.1, maximum=1, step=0.01, value=0.98)
input_top_k = gr.Slider(label="top k", minimum=1, maximum=20, step=1, value=12)
input_allow_cc = gr.Checkbox(label="allow midi cc event", value=True)
input_amp = gr.Checkbox(label="enable amp", value=True)
example3 = gr.Examples([[1, 0.98, 12], [1.2, 0.95, 8]], [input_temp, input_top_p, input_top_k])
run_btn = gr.Button("generate", variant="primary")
stop_btn = gr.Button("stop and output")
output_midi_seq = gr.Variable()
output_midi_visualizer = gr.HTML(elem_id="midi_visualizer_container")
output_audio = gr.Audio(label="output audio", format="wav", elem_id="midi_audio")
output_midi = gr.File(label="output midi", file_types=[".mid"])
run_event = run_btn.click(run, [tab_select, input_instruments, input_drum_kit, input_midi, input_midi_events,
input_gen_events, input_temp, input_top_p, input_top_k,
input_allow_cc, input_amp],
[output_midi_seq, output_midi, output_audio, js_msg])
stop_btn.click(cancel_run, output_midi_seq, [output_midi, output_audio, js_msg], cancels=run_event, queue=False)
app.queue(1).launch(server_port=opt.port)