forked from JuliaGPU/CUDA.jl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutil.jl
77 lines (70 loc) · 1.84 KB
/
util.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
# convert matrix to band storage
function band(A::AbstractMatrix,kl,ku)
m, n = size(A)
AB = zeros(eltype(A),kl+ku+1,n)
for j = 1:n
for i = max(1,j-ku):min(m,j+kl)
AB[ku+1-j+i,j] = A[i,j]
end
end
return AB
end
# convert band storage to general matrix
function unband(AB::AbstractMatrix,m,kl,ku)
bm, n = size(AB)
A = zeros(eltype(AB),m,n)
for j = 1:n
for i = max(1,j-ku):min(m,j+kl)
A[i,j] = AB[ku+1-j+i,j]
end
end
return A
end
# zero out elements not on matrix bands
function bandex(A::AbstractMatrix,kl,ku)
m, n = size(A)
AB = band(A,kl,ku)
B = unband(AB,m,kl,ku)
return B
end
const CublasFloat = Union{Float64,Float32,ComplexF64,ComplexF32}
const CublasReal = Union{Float64,Float32}
const CublasComplex = Union{ComplexF64,ComplexF32}
function Base.convert(::Type{cublasOperation_t}, trans::Char)
if trans == 'N'
return CUBLAS_OP_N
elseif trans == 'T'
return CUBLAS_OP_T
elseif trans == 'C'
return CUBLAS_OP_C
else
throw(ArgumentError("Unknown operation $trans"))
end
end
function Base.convert(::Type{cublasFillMode_t}, uplo::Char)
if uplo == 'U'
return CUBLAS_FILL_MODE_UPPER
elseif uplo == 'L'
return CUBLAS_FILL_MODE_LOWER
else
throw(ArgumentError("Unknown fill mode $uplo"))
end
end
function Base.convert(::Type{cublasDiagType_t}, diag::Char)
if diag == 'U'
return CUBLAS_DIAG_UNIT
elseif diag == 'N'
return CUBLAS_DIAG_NON_UNIT
else
throw(ArgumentError("Unknown diag mode $diag"))
end
end
function Base.convert(::Type{cublasSideMode_t}, side::Char)
if side == 'L'
return CUBLAS_SIDE_LEFT
elseif side == 'R'
return CUBLAS_SIDE_RIGHT
else
throw(ArgumentError("Unknown side mode $side"))
end
end