-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathrender_functions.py
242 lines (200 loc) · 7.58 KB
/
render_functions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
import argparse
import os
import sys
import datetime
import time
import math
import json
import torch
import numpy as np
from PIL import Image
import matplotlib.pyplot as plt
import pytorch3d
import torch
from pytorch3d.renderer import look_at_view_transform
from pytorch3d.renderer import OpenGLPerspectiveCameras
from pytorch3d.renderer import (
AlphaCompositor,
RasterizationSettings,
MeshRenderer,
MeshRasterizer,
PointsRasterizationSettings,
PointsRenderer,
PointsRasterizer,
HardPhongShader,
)
import mcubes
def get_device():
"""
Checks if GPU is available and returns device accordingly.
"""
if torch.cuda.is_available():
device = torch.device("cuda:0")
else:
device = torch.device("cpu")
return device
def get_points_renderer(
image_size=512, device=None, radius=0.01, background_color=(1, 1, 1)
):
"""
Returns a Pytorch3D renderer for point clouds.
Args:
image_size (int): The rendered image size.
device (torch.device): The torch device to use (CPU or GPU). If not specified,
will automatically use GPU if available, otherwise CPU.
radius (float): The radius of the rendered point in NDC.
background_color (tuple): The background color of the rendered image.
Returns:
PointsRenderer.
"""
if device is None:
if torch.cuda.is_available():
device = torch.device("cuda:0")
else:
device = torch.device("cpu")
raster_settings = PointsRasterizationSettings(image_size=image_size, radius=radius,)
renderer = PointsRenderer(
rasterizer=PointsRasterizer(raster_settings=raster_settings),
compositor=AlphaCompositor(background_color=background_color),
)
return renderer
def render_points(filename, points, image_size=256, color=[0.7, 0.7, 1], device=None):
# The device tells us whether we are rendering with GPU or CPU. The rendering will
# be *much* faster if you have a CUDA-enabled NVIDIA GPU. However, your code will
# still run fine on a CPU.
# The default is to run on CPU, so if you do not have a GPU, you do not need to
# worry about specifying the device in all of these functions.
if device is None:
device = get_device()
# Get the renderer.
points_renderer = get_points_renderer(image_size=256,radius=0.01)
# Get the vertices, faces, and textures.
# vertices, faces = load_cow_mesh(cow_path)
# vertices = vertices.unsqueeze(0) # (N_v, 3) -> (1, N_v, 3)
# faces = faces.unsqueeze(0) # (N_f, 3) -> (1, N_f, 3)
textures = torch.ones(points.size()).to(device)*0.5 # (1, N_v, 3)
rgb = textures * torch.tensor(color).to(device) # (1, N_v, 3)
point_cloud = pytorch3d.structures.pointclouds.Pointclouds(
points=points, features=rgb
)
R, T = look_at_view_transform(10.0, 10.0, 96)
# Prepare the camera:
cameras = OpenGLPerspectiveCameras(
R=R,T=T, device=device
)
rend = points_renderer(point_cloud.extend(2), cameras=cameras)
# Place a point light in front of the cow.
# lights = pytorch3d.renderer.PointLights(location=[[0.0, 1.0, -2.0]], device=device)
# rend = renderer(mesh, cameras=cameras, lights=lights)
rend = rend.detach().cpu().numpy()[0, ..., :3] # (B, H, W, 4) -> (H, W, 3)
plt.imsave(filename, rend)
# The .cpu moves the tensor to GPU (if needed).
return rend
def render_points_with_save(
points,
cameras,
image_size,
save=False,
file_prefix='',
color=[0.7, 0.7, 1]
):
device = points.device
if device is None:
device = get_device()
# Get the renderer.
points_renderer = get_points_renderer(image_size=image_size[0], radius=0.01)
textures = torch.ones(points.size()).to(device) # (1, N_v, 3)
rgb = textures * torch.tensor(color).to(device) # (1, N_v, 3)
point_cloud = pytorch3d.structures.pointclouds.Pointclouds(
points=points, features=rgb
)
all_images = []
with torch.no_grad():
torch.cuda.empty_cache()
for cam_idx in range(len(cameras)):
image = points_renderer(point_cloud, cameras=cameras[cam_idx].to(device))
image = image[0,:,:,:3].detach().cpu().numpy()
all_images.append(image)
# Save
if save:
plt.imsave(
f'{file_prefix}_{cam_idx}.png',
image
)
return all_images
def get_mesh_renderer(image_size=512, lights=None, device=None):
"""
Returns a Pytorch3D Mesh Renderer.
Args:
image_size (int): The rendered image size.
lights: A default Pytorch3D lights object.
device (torch.device): The torch device to use (CPU or GPU). If not specified,
will automatically use GPU if available, otherwise CPU.
"""
if device is None:
if torch.cuda.is_available():
device = torch.device("cuda:0")
else:
device = torch.device("cpu")
raster_settings = RasterizationSettings(
image_size=image_size, blur_radius=0.0, faces_per_pixel=1,
)
renderer = MeshRenderer(
rasterizer=MeshRasterizer(raster_settings=raster_settings),
shader=HardPhongShader(device=device, lights=lights),
)
return renderer
def implicit_to_mesh(implicit_fn, scale=0.5, grid_size=128, device='cpu', color=[0.7, 0.7, 1], chunk_size=262144, thresh=0):
Xs = torch.linspace(-1*scale, scale, grid_size+1).to(device)
Ys = torch.linspace(-1*scale, scale, grid_size+1).to(device)
Zs = torch.linspace(-1*scale, scale, grid_size+1).to(device)
grid = torch.stack(torch.meshgrid(Xs, Ys, Zs), dim=-1)
grid = grid.view(-1, 3)
num_points = grid.shape[0]
sdfs = torch.zeros(num_points)
with torch.no_grad():
for chunk_start in range(0, num_points, chunk_size):
torch.cuda.empty_cache()
chunk_end = min(num_points, chunk_start+chunk_size)
sdfs[chunk_start:chunk_end] = implicit_fn.get_distance(grid[chunk_start:chunk_end,:]).view(-1)
sdfs = sdfs.view(grid_size+1, grid_size+1, grid_size+1)
vertices, triangles = mcubes.marching_cubes(sdfs.cpu().numpy(), thresh)
# normalize to [-scale, scale]
vertices = (vertices/grid_size - 0.5)*2*scale
vertices = torch.from_numpy(vertices).unsqueeze(0).float()
faces = torch.from_numpy(triangles.astype(np.int64)).unsqueeze(0)
textures = torch.ones_like(vertices) # (1, N_v, 3)
textures = textures * torch.tensor(color) # (1, N_v, 3)
mesh = pytorch3d.structures.Meshes(
verts=vertices,
faces=faces,
textures=pytorch3d.renderer.TexturesVertex(textures),
)
mesh = mesh.to(device)
return mesh
def render_geometry(
model,
cameras,
image_size,
save=False,
thresh=0.,
file_prefix=''
):
device = list(model.parameters())[0].device
lights = pytorch3d.renderer.PointLights(location=[[0, 0, -3]], device=device)
mesh_renderer = get_mesh_renderer(image_size=image_size[0], lights=lights, device=device)
mesh = implicit_to_mesh(model.implicit_fn, scale=3, device=device, thresh=thresh)
all_images = []
with torch.no_grad():
torch.cuda.empty_cache()
for cam_idx in range(len(cameras)):
image = mesh_renderer(mesh, cameras=cameras[cam_idx].to(device))
image = image[0,:,:,:3].detach().cpu().numpy()
all_images.append(image)
# Save
if save:
plt.imsave(
f'{file_prefix}_{cam_idx}.png',
image
)
return all_images