-
Notifications
You must be signed in to change notification settings - Fork 0
/
NeuralNetwork.py
466 lines (337 loc) · 13.3 KB
/
NeuralNetwork.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
from mlxtend.data import loadlocal_mnist
from skimage.transform import resize
import matplotlib.pyplot as plt
import matplotlib.image as img
import numpy as np
import os
def Sigmoid(x):
np.seterr(all='ignore')
x[x<-500] = -500
return 1/(1 + np.exp(-x))
def SigmoidDerivative(x):
np.seterr(all='ignore')
x[x<-500] = -500
return np.exp(-x)/(np.square(1 + np.exp(-x)))
class DataSet:
def __init__(self):
pass
def LoadTrainData(self):
X, y = loadlocal_mnist(
images_path='/home/luis/Documents/NN/train-images.idx3-ubyte',
labels_path='/home/luis/Documents/NN/train-labels.idx1-ubyte')
self.images = X
self.labels = y
def LoadTestData(self):
X, y = loadlocal_mnist(
images_path='/home/luis/Documents/NN/t10k-images.idx3-ubyte',
labels_path='/home/luis/Documents/NN/t10k-labels.idx1-ubyte')
self.images = X
self.labels = y
class NeuralNetwork:
def __init__(self):
self.data = DataSet()
self.data.LoadTrainData()
self.testData = DataSet()
self.testData.LoadTestData()
self.dWeights1 = np.zeros((16,784))
self.dWeights2 = np.zeros((16,16))
self.dWeights3 = np.zeros((10,16))
self.dBiases1 = np.zeros(16)
self.dBiases2 = np.zeros(16)
self.dBiases3 = np.zeros(10)
def CreateWeights(self):
self.TestCounter = 0
self.weights1 = (2*np.random.rand(16,784)-1)/np.sqrt(784)
self.weights2 = (2*np.random.rand(16,16)-1)/np.sqrt(16)
self.weights3 = (2*np.random.rand(10,16)-1)/np.sqrt(16)
self.biases1 = np.zeros(16)
self.biases2 = np.zeros(16)
self.biases3 = np.zeros(10)
def LoadWeights(self):
NetData = open("/home/luis/Documents/NN/NetData.txt", "r")
self.TestCounter = np.loadtxt(NetData, comments="#", max_rows = 1)
self.weights1 = np.loadtxt(NetData, comments="#", max_rows = 16)
self.weights2 = np.loadtxt(NetData, comments="#", max_rows = 16)
self.weights3 = np.loadtxt(NetData, comments="#", max_rows = 10)
self.biases1 = np.loadtxt(NetData, comments="#", max_rows = 16)
self.biases2 = np.loadtxt(NetData, comments="#", max_rows = 16)
self.biases3 = np.loadtxt(NetData, comments="#", max_rows = 10)
def SaveWeights(self):
if os.path.exists("NetData.txt"):
os.remove("NetData.txt")
NetData = open("NetData.txt", "a")
NetData.write("#TestCounter\n")
NetData.write(str(self.TestCounter))
NetData = open("NetData.txt", "ab")
NetData.write(b"\n\n#W1\n")
np.savetxt(NetData, self.weights1, fmt='%.5f')
NetData.write(b"\n#W2\n")
np.savetxt(NetData, self.weights2, fmt='%.5f')
NetData.write(b"\n#W3\n")
np.savetxt(NetData, self.weights3, fmt='%.5f')
NetData.write(b"\n#b1\n")
np.savetxt(NetData, self.biases1, fmt='%.5f')
NetData.write(b"\n#b2\n")
np.savetxt(NetData, self.biases2, fmt='%.5f')
NetData.write(b"\n#b3\n")
np.savetxt(NetData, self.biases3, fmt='%.5f')
NetData.close()
def FeedForward(self):
self.layer1 = Sigmoid(np.matmul(self.weights1, self.input) + self.biases1)
self.layer2 = Sigmoid(np.matmul(self.weights2, self.layer1) + self.biases2)
self.output = Sigmoid(np.matmul(self.weights3, self.layer2) + self.biases3)
def BackPropagate(self):
dWeights1 = np.zeros((16,784))
dWeights2 = np.zeros((16,16))
dWeights3 = np.zeros((10,16))
dBiases1 = np.zeros(16)
dBiases2 = np.zeros(16)
dBiases3 = np.zeros(10)
p = 0.01
z1 = np.matmul(self.weights1, self.input) + self.biases1
z2 = np.matmul(self.weights2, self.layer1) + self.biases2
z3 = np.matmul(self.weights3, self.layer2) + self.biases3
dz3 = 2*np.multiply(self.output - self.expectedOutput, SigmoidDerivative(z3))
dz2 = np.multiply(SigmoidDerivative(z2), np.matmul(dz3, self.weights3))
dz1 = np.multiply(SigmoidDerivative(z1), np.matmul(dz2, self.weights2))
dWeights3 = np.outer(dz3, self.layer2)
dWeights2 = np.outer(dz2, self.layer1)
dWeights1 = np.outer(dz1, self.input)
dBiases3 = dz3
dBiases2 = dz2
dBiases1 = dz1
self.dWeights1 += p*dWeights1
self.dWeights2 += p*dWeights2
self.dWeights3 += p*dWeights3
self.dBiases1 += p*dBiases1
self.dBiases2 += p*dBiases2
self.dBiases3 += p*dBiases3
#corre dataset de teste para ver a taxa de sucesso
def TrueTest(self):
correct = 0
total = 0
#for n in range(1):
for n in range(10000):
self.input = self.testData.images[n].reshape(-1)
self.expectedOutput = np.zeros(10)
self.expectedOutput[self.testData.labels[n]] = 1
#plt.imshow(self.testData.images[n].reshape((28,28)))
#plt.show()
#print(self.testData.images[n])
self.FeedForward()
#print(np.argmax(self.output),self.testData.labels[n])
if np.argmax(self.output) == self.testData.labels[n]:
correct += 1
total += 1
else:
total += 1
return 100*correct/total
#testa um input e faz backpropagation
def Test(self, n):
self.input = self.data.images[n].reshape(-1)/255
self.expectedOutput = np.zeros(10)
self.expectedOutput[self.data.labels[n]] = 1
self.FeedForward()
self.BackPropagate()
#ciclo de aprendizagem: analiza 100 imagens de cada vez
def Learn(self, n):
for i in range(n):
for j in range(100):
self.Test((int(self.TestCounter) + j)%60000)
self.weights1 -= self.dWeights1
self.weights2 -= self.dWeights2
self.weights3 -= self.dWeights3
self.biases1 -= self.dBiases1
self.biases2 -= self.dBiases2
self.biases3 -= self.dBiases3
self.dWeights1 = np.zeros((16,784))
self.dWeights2 = np.zeros((16,16))
self.dWeights3 = np.zeros((10,16))
self.dBiases1 = np.zeros(16)
self.dBiases2 = np.zeros(16)
self.dBiases3 = np.zeros(10)
self.TestCounter += 100
self.SaveWeights()
print("Teste", i+1, "de", n, "completo")
#tenta adivinhar uma imagem
def Guess(self, n):
self.input = self.data.images[n].reshape(-1)
expectedOutput = self.data.labels[n]
self.FeedForward()
output = np.argmax(self.output)
print("Ao analizar uma imagem do número", expectedOutput, "o Bob viu um", output)
def CarregarImagem(self):
os.system('cls' if os.name == 'nt' else 'clear')
fileName = input("Inserir nome da imagem\n")
if fileName == "":
StartMenu()
else:
if os.path.exists(fileName):
imagem = rgb2gray(img.imread(fileName))
imagem = resize(imagem, (28, 28))
self.input = imagem.reshape(-1)
plt.imshow(imagem, cmap='gray', vmin=0, vmax=255)
else:
os.system('cls' if os.name == 'nt' else 'clear')
print("Esta imagem não existe")
input("\nENTER para continuar")
self.CarregarImagem()
def rgb2gray(rgb):
r, g, b = rgb[:,:,0], rgb[:,:,1], rgb[:,:,2]
gray = 0.2989 * r + 0.5870 * g + 0.1140 * b
return gray
def OpcaoCriar():
os.system('cls' if os.name == 'nt' else 'clear')
Bob = NeuralNetwork()
print("Criar uma nova rede vai eliminar a rede actual")
print("Tens a certeza que é o que pretendes?(y/n)")
option = input()
if option == 'y' or option == 'yes':
Bob.CreateWeights()
Bob.SaveWeights()
os.system('cls' if os.name == 'nt' else 'clear')
print("Rede criada")
input("\nENTER para continuar")
StartMenu()
elif option == 'n' or option == 'no':
StartMenu()
else:
os.system('cls' if os.name == 'nt' else 'clear')
print("Opção indisponível")
input("\nENTER para continuar")
OpcaoCriar()
def OpcaoTreinar():
os.system('cls' if os.name == 'nt' else 'clear')
Bob = NeuralNetwork()
Bob.LoadWeights()
print("Quantos grupos de imagens vamos analizar?")
print("(cada conjunto são 10 imagens e demora 7-10 minutos)")
n = int(input())
os.system('cls' if os.name == 'nt' else 'clear')
print("Treinando...")
Bob.Learn(n)
os.system('cls' if os.name == 'nt' else 'clear')
print("Treino completo")
input("\nENTER para continuar")
StartMenu()
def OpcaoAdivinhar():
os.system('cls' if os.name == 'nt' else 'clear')
Bob = NeuralNetwork()
Bob.LoadWeights()
print("1 - Imagem aleatória")
print("2 - Carregar imagem")
print("3 - Avaliar rede")
print("4 - Voltar")
option = int(input())
if option == 1:
os.system('cls' if os.name == 'nt' else 'clear')
Bob.Guess(np.random.randint(0, 10000))
print(Bob.output)
input("\nENTER para continuar")
OpcaoAdivinhar()
elif option == 2:
os.system('cls' if os.name == 'nt' else 'clear')
Bob.CarregarImagem()
Bob.FeedForward()
output = np.argmax(Bob.output)
print("Ao analizar a imagem, o Bob viu um", output)
print(Bob.output)
plt.show()
input("\nENTER para continuar")
OpcaoAdivinhar()
elif option == 3:
os.system('cls' if os.name == 'nt' else 'clear')
p = Bob.TrueTest()
print("O Bob tem uma taxa de sucesso de", p)
print("Burro do caralho")
input("\nENTER para continuar")
OpcaoAdivinhar()
elif option == 4:
StartMenu()
else:
os.system('cls' if os.name == 'nt' else 'clear')
print("Opção indisponível")
input("\nENTER para continuar")
OpcaoAdivinhar()
def OpcaoBackup():
os.system('cls' if os.name == 'nt' else 'clear')
if os.path.exists("NetData.txt"):
Bob = NeuralNetwork()
Bob.LoadWeights()
if os.path.exists("NetDataBackup.txt"):
os.remove("NetDataBackup.txt")
NetData = open("NetDataBackup.txt", "w")
NetData.write("#TestCounter\n")
NetData.write(str(Bob.TestCounter))
NetData = open("NetDataBackup.txt", "ab")
NetData.write(b"\n\n#W1\n")
np.savetxt(NetData, Bob.weights1, fmt='%.5f')
NetData.write(b"\n#W2\n")
np.savetxt(NetData, Bob.weights2, fmt='%.5f')
NetData.write(b"\n#W3\n")
np.savetxt(NetData, Bob.weights3, fmt='%.5f')
NetData.write(b"\n#b1\n")
np.savetxt(NetData, Bob.biases1, fmt='%.5f')
NetData.write(b"\n#b2\n")
np.savetxt(NetData, Bob.biases2, fmt='%.5f')
NetData.write(b"\n#b3\n")
np.savetxt(NetData, Bob.biases3, fmt='%.5f')
NetData.close()
print("Backup criado")
input("\nENTER para continuar")
StartMenu()
else:
print("Tens que criar uma rede")
input("\nENTER para continuar")
StartMenu()
def OpcaoVisualizar():
os.system('cls' if os.name == 'nt' else 'clear')
Bob = NeuralNetwork()
Bob.LoadWeights()
fig = plt.figure()
for i in range(16):
fig.add_subplot(4, 4, i+1)
plt.imshow(Bob.weights1[i,:].reshape((28,28)))
plt.show()
fig = plt.figure()
for i in range(16):
fig.add_subplot(4, 4, i+1)
plt.imshow(Bob.weights2[i,:].reshape((4,4)))
plt.show()
fig = plt.figure()
for i in range(10):
fig.add_subplot(4, 4, i+1)
plt.imshow(Bob.weights3[i,:].reshape((4,4)))
plt.show()
StartMenu()
def StartMenu():
os.system('cls' if os.name == 'nt' else 'clear')
print("1 - Nova Rede")
print("2 - Treinar")
print("3 - Adivinhar")
print("4 - Visualizar")
print("5 - Backup Data")
print("6 - Sair")
option = int(input())
if option == 1:
OpcaoCriar()
elif option == 2:
OpcaoTreinar()
elif option == 3:
OpcaoAdivinhar()
elif option == 4:
OpcaoVisualizar()
elif option == 5:
OpcaoBackup()
elif option == 6:
os.system('cls' if os.name == 'nt' else 'clear')
return 0
else:
os.system('cls' if os.name == 'nt' else 'clear')
print("Opção indisponível")
input("\nENTER para continuar")
StartMenu()
StartMenu()
#Bob = NeuralNetwork()
#Bob.CreateWeights()
#Bob.Test(1)