forked from esp8266/Arduino
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSPI.cpp
488 lines (417 loc) · 12.1 KB
/
SPI.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
/*
SPI.cpp - SPI library for esp8266
Copyright (c) 2015 Hristo Gochkov. All rights reserved.
This file is part of the esp8266 core for Arduino environment.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "SPI.h"
#include "HardwareSerial.h"
typedef union {
uint32_t regValue;
struct {
unsigned regL :6;
unsigned regH :6;
unsigned regN :6;
unsigned regPre :13;
unsigned regEQU :1;
};
} spiClk_t;
SPIClass SPI;
SPIClass::SPIClass() {
useHwCs = false;
}
void SPIClass::begin() {
pinMode(SCK, SPECIAL); ///< GPIO14
pinMode(MISO, SPECIAL); ///< GPIO12
pinMode(MOSI, SPECIAL); ///< GPIO13
SPI1C = 0;
setFrequency(1000000); ///< 1MHz
SPI1U = SPIUMOSI | SPIUDUPLEX | SPIUSSE;
SPI1U1 = (7 << SPILMOSI) | (7 << SPILMISO);
SPI1C1 = 0;
}
void SPIClass::end() {
pinMode(SCK, INPUT);
pinMode(MISO, INPUT);
pinMode(MOSI, INPUT);
if(useHwCs) {
pinMode(SS, INPUT);
}
}
void SPIClass::setHwCs(bool use) {
if(use) {
pinMode(SS, SPECIAL); ///< GPIO15
SPI1U |= (SPIUCSSETUP | SPIUCSHOLD);
} else {
if(useHwCs) {
pinMode(SS, INPUT);
SPI1U &= ~(SPIUCSSETUP | SPIUCSHOLD);
}
}
useHwCs = use;
}
void SPIClass::beginTransaction(SPISettings settings) {
while(SPI1CMD & SPIBUSY) {}
setFrequency(settings._clock);
setBitOrder(settings._bitOrder);
setDataMode(settings._dataMode);
}
void SPIClass::endTransaction() {
}
void SPIClass::setDataMode(uint8_t dataMode) {
/**
SPI_MODE0 0x00 - CPOL: 0 CPHA: 0
SPI_MODE1 0x01 - CPOL: 0 CPHA: 1
SPI_MODE2 0x10 - CPOL: 1 CPHA: 0
SPI_MODE3 0x11 - CPOL: 1 CPHA: 1
*/
bool CPOL = (dataMode & 0x10); ///< CPOL (Clock Polarity)
bool CPHA = (dataMode & 0x01); ///< CPHA (Clock Phase)
if(CPHA) {
SPI1U |= (SPIUSME);
} else {
SPI1U &= ~(SPIUSME);
}
if(CPOL) {
SPI1P |= 1<<29;
} else {
SPI1P &= ~(1<<29);
//todo test whether it is correct to set CPOL like this.
}
}
void SPIClass::setBitOrder(uint8_t bitOrder) {
if(bitOrder == MSBFIRST) {
SPI1C &= ~(SPICWBO | SPICRBO);
} else {
SPI1C |= (SPICWBO | SPICRBO);
}
}
/**
* calculate the Frequency based on the register value
* @param reg
* @return
*/
static uint32_t ClkRegToFreq(spiClk_t * reg) {
return (ESP8266_CLOCK / ((reg->regPre + 1) * (reg->regN + 1)));
}
void SPIClass::setFrequency(uint32_t freq) {
static uint32_t lastSetFrequency = 0;
static uint32_t lastSetRegister = 0;
if(freq >= ESP8266_CLOCK) {
setClockDivider(0x80000000);
return;
}
if(lastSetFrequency == freq && lastSetRegister == SPI1CLK) {
// do nothing (speed optimization)
return;
}
const spiClk_t minFreqReg = { 0x7FFFF000 };
uint32_t minFreq = ClkRegToFreq((spiClk_t*) &minFreqReg);
if(freq < minFreq) {
// use minimum possible clock
setClockDivider(minFreqReg.regValue);
lastSetRegister = SPI1CLK;
lastSetFrequency = freq;
return;
}
uint8_t calN = 1;
spiClk_t bestReg = { 0 };
int32_t bestFreq = 0;
// find the best match
while(calN <= 0x3F) { // 0x3F max for N
spiClk_t reg = { 0 };
int32_t calFreq;
int32_t calPre;
int8_t calPreVari = -2;
reg.regN = calN;
while(calPreVari++ <= 1) { // test different variants for Pre (we calculate in int so we miss the decimals, testing is the easyest and fastest way)
calPre = (((ESP8266_CLOCK / (reg.regN + 1)) / freq) - 1) + calPreVari;
if(calPre > 0x1FFF) {
reg.regPre = 0x1FFF; // 8191
} else if(calPre <= 0) {
reg.regPre = 0;
} else {
reg.regPre = calPre;
}
reg.regL = ((reg.regN + 1) / 2);
// reg.regH = (reg.regN - reg.regL);
// test calculation
calFreq = ClkRegToFreq(®);
//os_printf("-----[0x%08X][%d]\t EQU: %d\t Pre: %d\t N: %d\t H: %d\t L: %d = %d\n", reg.regValue, freq, reg.regEQU, reg.regPre, reg.regN, reg.regH, reg.regL, calFreq);
if(calFreq == (int32_t) freq) {
// accurate match use it!
memcpy(&bestReg, ®, sizeof(bestReg));
break;
} else if(calFreq < (int32_t) freq) {
// never go over the requested frequency
if(abs(freq - calFreq) < abs(freq - bestFreq)) {
bestFreq = calFreq;
memcpy(&bestReg, ®, sizeof(bestReg));
}
}
}
if(calFreq == (int32_t) freq) {
// accurate match use it!
break;
}
calN++;
}
// os_printf("[0x%08X][%d]\t EQU: %d\t Pre: %d\t N: %d\t H: %d\t L: %d\t - Real Frequency: %d\n", bestReg.regValue, freq, bestReg.regEQU, bestReg.regPre, bestReg.regN, bestReg.regH, bestReg.regL, ClkRegToFreq(&bestReg));
setClockDivider(bestReg.regValue);
lastSetRegister = SPI1CLK;
lastSetFrequency = freq;
}
void SPIClass::setClockDivider(uint32_t clockDiv) {
if(clockDiv == 0x80000000) {
GPMUX |= (1 << 9); // Set bit 9 if sysclock required
} else {
GPMUX &= ~(1 << 9);
}
SPI1CLK = clockDiv;
}
inline void SPIClass::setDataBits(uint16_t bits) {
const uint32_t mask = ~((SPIMMOSI << SPILMOSI) | (SPIMMISO << SPILMISO));
bits--;
SPI1U1 = ((SPI1U1 & mask) | ((bits << SPILMOSI) | (bits << SPILMISO)));
}
uint8_t SPIClass::transfer(uint8_t data) {
while(SPI1CMD & SPIBUSY) {}
// reset to 8Bit mode
setDataBits(8);
SPI1W0 = data;
SPI1CMD |= SPIBUSY;
while(SPI1CMD & SPIBUSY) {}
return (uint8_t) (SPI1W0 & 0xff);
}
uint16_t SPIClass::transfer16(uint16_t data) {
union {
uint16_t val;
struct {
uint8_t lsb;
uint8_t msb;
};
} in, out;
in.val = data;
if((SPI1C & (SPICWBO | SPICRBO))) {
//LSBFIRST
out.lsb = transfer(in.lsb);
out.msb = transfer(in.msb);
} else {
//MSBFIRST
out.msb = transfer(in.msb);
out.lsb = transfer(in.lsb);
}
return out.val;
}
void SPIClass::write(uint8_t data) {
while(SPI1CMD & SPIBUSY) {}
// reset to 8Bit mode
setDataBits(8);
SPI1W0 = data;
SPI1CMD |= SPIBUSY;
while(SPI1CMD & SPIBUSY) {}
}
void SPIClass::write16(uint16_t data) {
write16(data, !(SPI1C & (SPICWBO | SPICRBO)));
}
void SPIClass::write16(uint16_t data, bool msb) {
while(SPI1CMD & SPIBUSY) {}
// Set to 16Bits transfer
setDataBits(16);
if(msb) {
// MSBFIRST Byte first
SPI1W0 = (data >> 8) | (data << 8);
SPI1CMD |= SPIBUSY;
} else {
// LSBFIRST Byte first
SPI1W0 = data;
SPI1CMD |= SPIBUSY;
}
while(SPI1CMD & SPIBUSY) {}
}
void SPIClass::write32(uint32_t data) {
write32(data, !(SPI1C & (SPICWBO | SPICRBO)));
}
void SPIClass::write32(uint32_t data, bool msb) {
while(SPI1CMD & SPIBUSY) {}
// Set to 32Bits transfer
setDataBits(32);
if(msb) {
union {
uint32_t l;
uint8_t b[4];
} data_;
data_.l = data;
// MSBFIRST Byte first
SPI1W0 = (data_.b[3] | (data_.b[2] << 8) | (data_.b[1] << 16) | (data_.b[0] << 24));
SPI1CMD |= SPIBUSY;
} else {
// LSBFIRST Byte first
SPI1W0 = data;
SPI1CMD |= SPIBUSY;
}
while(SPI1CMD & SPIBUSY) {}
}
/**
* Note:
* data need to be aligned to 32Bit
* or you get an Fatal exception (9)
* @param data uint8_t *
* @param size uint32_t
*/
void SPIClass::writeBytes(uint8_t * data, uint32_t size) {
while(size) {
if(size > 64) {
writeBytes_(data, 64);
size -= 64;
data += 64;
} else {
writeBytes_(data, size);
size = 0;
}
}
}
void SPIClass::writeBytes_(uint8_t * data, uint8_t size) {
while(SPI1CMD & SPIBUSY) {}
// Set Bits to transfer
setDataBits(size * 8);
volatile uint32_t * fifoPtr = &SPI1W0;
uint32_t * dataPtr = (uint32_t*) data;
uint8_t dataSize = ((size + 3) / 4);
while(dataSize--) {
*fifoPtr = *dataPtr;
dataPtr++;
fifoPtr++;
}
SPI1CMD |= SPIBUSY;
while(SPI1CMD & SPIBUSY) {}
}
/**
* @param data uint8_t *
* @param size uint8_t max for size is 64Byte
* @param repeat uint32_t
*/
void SPIClass::writePattern(uint8_t * data, uint8_t size, uint32_t repeat) {
if(size > 64) return; //max Hardware FIFO
while(SPI1CMD & SPIBUSY) {}
uint32_t buffer[16];
uint8_t *bufferPtr=(uint8_t *)&buffer;
uint8_t *dataPtr = data;
volatile uint32_t * fifoPtr = &SPI1W0;
uint8_t r;
uint32_t repeatRem;
uint8_t i;
if((repeat * size) <= 64){
repeatRem = repeat * size;
r = repeat;
while(r--){
dataPtr = data;
for(i=0; i<size; i++){
*bufferPtr = *dataPtr;
bufferPtr++;
dataPtr++;
}
}
r = repeatRem;
if(r & 3) r = r / 4 + 1;
else r = r / 4;
for(i=0; i<r; i++){
*fifoPtr = buffer[i];
fifoPtr++;
}
SPI1U = SPIUMOSI | SPIUSSE;
} else {
//Orig
r = 64 / size;
repeatRem = repeat % r * size;
repeat = repeat / r;
while(r--){
dataPtr = data;
for(i=0; i<size; i++){
*bufferPtr = *dataPtr;
bufferPtr++;
dataPtr++;
}
}
//Fill fifo with data
for(i=0; i<16; i++){
*fifoPtr = buffer[i];
fifoPtr++;
}
r = 64 / size;
SPI1U = SPIUMOSI | SPIUSSE;
setDataBits(r * size * 8);
while(repeat--){
SPI1CMD |= SPIBUSY;
while(SPI1CMD & SPIBUSY) {}
}
}
//End orig
setDataBits(repeatRem * 8);
SPI1CMD |= SPIBUSY;
while(SPI1CMD & SPIBUSY) {}
SPI1U = SPIUMOSI | SPIUDUPLEX | SPIUSSE;
}
/**
* Note:
* in and out need to be aligned to 32Bit
* or you get an Fatal exception (9)
* @param out uint8_t *
* @param in uint8_t *
* @param size uint32_t
*/
void SPIClass::transferBytes(uint8_t * out, uint8_t * in, uint32_t size) {
while(size) {
if(size > 64) {
transferBytes_(out, in, 64);
size -= 64;
if(out) out += 64;
if(in) in += 64;
} else {
transferBytes_(out, in, size);
size = 0;
}
}
}
void SPIClass::transferBytes_(uint8_t * out, uint8_t * in, uint8_t size) {
while(SPI1CMD & SPIBUSY) {}
// Set in/out Bits to transfer
setDataBits(size * 8);
volatile uint32_t * fifoPtr = &SPI1W0;
uint8_t dataSize = ((size + 3) / 4);
if(out) {
uint32_t * dataPtr = (uint32_t*) out;
while(dataSize--) {
*fifoPtr = *dataPtr;
dataPtr++;
fifoPtr++;
}
} else {
// no out data only read fill with dummy data!
while(dataSize--) {
*fifoPtr = 0xFFFFFFFF;
fifoPtr++;
}
}
SPI1CMD |= SPIBUSY;
while(SPI1CMD & SPIBUSY) {}
if(in) {
volatile uint8_t * fifoPtr8 = (volatile uint8_t *) &SPI1W0;
dataSize = size;
while(dataSize--) {
*in = *fifoPtr8;
in++;
fifoPtr8++;
}
}
}