forked from kpu/kenlm
-
Notifications
You must be signed in to change notification settings - Fork 0
/
example.py
executable file
·43 lines (36 loc) · 1.39 KB
/
example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
#!/usr/bin/env python
import os
import kenlm
LM = os.path.join(os.path.dirname(__file__), '..', 'lm', 'test.arpa')
model = kenlm.Model(LM)
print('{0}-gram model'.format(model.order))
sentence = 'language modeling is fun .'
print(sentence)
print(model.score(sentence))
# Check that total full score = direct score
def score(s):
return sum(prob for prob, _, _ in model.full_scores(s))
assert (abs(score(sentence) - model.score(sentence)) < 1e-3)
# Show scores and n-gram matches
words = ['<s>'] + sentence.split() + ['</s>']
for i, (prob, length, oov) in enumerate(model.full_scores(sentence)):
print('{0} {1}: {2}'.format(prob, length, ' '.join(words[i+2-length:i+2])))
if oov:
print('\t"{0}" is an OOV'.format(words[i+1]))
# Find out-of-vocabulary words
for w in words:
if not w in model:
print('"{0}" is an OOV'.format(w))
#Stateful query
state = kenlm.State()
state2 = kenlm.State()
#Use <s> as context. If you don't want <s>, use model.NullContextWrite(state).
model.BeginSentenceWrite(state)
accum = 0.0
accum += model.BaseScore(state, "a", state2)
accum += model.BaseScore(state2, "sentence", state)
#score defaults to bos = True and eos = True. Here we'll check without the end
#of sentence marker.
assert (abs(accum - model.score("a sentence", eos = False)) < 1e-3)
accum += model.BaseScore(state, "</s>", state2)
assert (abs(accum - model.score("a sentence")) < 1e-3)