forked from Lightning-AI/pytorch-lightning
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_datamodules.py
358 lines (268 loc) · 8.91 KB
/
test_datamodules.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
import pickle
from argparse import ArgumentParser
from unittest.mock import MagicMock
import pytest
import torch
from pytorch_lightning import LightningDataModule, Trainer, seed_everything
from tests.base import EvalModelTemplate
from tests.base.datamodules import TrialMNISTDataModule
from tests.base.develop_utils import reset_seed
from pytorch_lightning.utilities.model_utils import is_overridden
def test_can_prepare_data(tmpdir):
dm = TrialMNISTDataModule()
trainer = Trainer()
trainer.datamodule = dm
# 1 no DM
# prepare_data_per_node = True
# local rank = 0 (True)
trainer.prepare_data_per_node = True
trainer.local_rank = 0
assert trainer.data_connector.can_prepare_data()
# local rank = 1 (False)
trainer.local_rank = 1
assert not trainer.data_connector.can_prepare_data()
# prepare_data_per_node = False (prepare across all nodes)
# global rank = 0 (True)
trainer.prepare_data_per_node = False
trainer.node_rank = 0
trainer.local_rank = 0
assert trainer.data_connector.can_prepare_data()
# global rank = 1 (False)
trainer.node_rank = 1
trainer.local_rank = 0
assert not trainer.data_connector.can_prepare_data()
trainer.node_rank = 0
trainer.local_rank = 1
assert not trainer.data_connector.can_prepare_data()
# 2 dm
# prepar per node = True
# local rank = 0 (True)
trainer.prepare_data_per_node = True
trainer.local_rank = 0
# is_overridden prepare data = True
# has been called
# False
dm._has_prepared_data = True
assert not trainer.data_connector.can_prepare_data()
# has not been called
# True
dm._has_prepared_data = False
assert trainer.data_connector.can_prepare_data()
# is_overridden prepare data = False
# True
dm.prepare_data = None
assert trainer.data_connector.can_prepare_data()
def test_base_datamodule(tmpdir):
dm = TrialMNISTDataModule()
dm.prepare_data()
dm.setup()
def test_base_datamodule_with_verbose_setup(tmpdir):
dm = TrialMNISTDataModule()
dm.prepare_data()
dm.setup('fit')
dm.setup('test')
def test_data_hooks_called(tmpdir):
dm = TrialMNISTDataModule()
assert dm.has_prepared_data is False
assert dm.has_setup_fit is False
assert dm.has_setup_test is False
dm.prepare_data()
assert dm.has_prepared_data is True
assert dm.has_setup_fit is False
assert dm.has_setup_test is False
dm.setup()
assert dm.has_prepared_data is True
assert dm.has_setup_fit is True
assert dm.has_setup_test is True
def test_data_hooks_called_verbose(tmpdir):
dm = TrialMNISTDataModule()
assert dm.has_prepared_data is False
assert dm.has_setup_fit is False
assert dm.has_setup_test is False
dm.prepare_data()
assert dm.has_prepared_data is True
assert dm.has_setup_fit is False
assert dm.has_setup_test is False
dm.setup('fit')
assert dm.has_prepared_data is True
assert dm.has_setup_fit is True
assert dm.has_setup_test is False
dm.setup('test')
assert dm.has_prepared_data is True
assert dm.has_setup_fit is True
assert dm.has_setup_test is True
def test_data_hooks_called_with_stage_kwarg(tmpdir):
dm = TrialMNISTDataModule()
dm.prepare_data()
assert dm.has_prepared_data is True
dm.setup(stage='fit')
assert dm.has_setup_fit is True
assert dm.has_setup_test is False
dm.setup(stage='test')
assert dm.has_setup_fit is True
assert dm.has_setup_test is True
def test_dm_add_argparse_args(tmpdir):
parser = ArgumentParser()
parser = TrialMNISTDataModule.add_argparse_args(parser)
args = parser.parse_args(['--data_dir', './my_data'])
assert args.data_dir == './my_data'
def test_dm_init_from_argparse_args(tmpdir):
parser = ArgumentParser()
parser = TrialMNISTDataModule.add_argparse_args(parser)
args = parser.parse_args(['--data_dir', './my_data'])
dm = TrialMNISTDataModule.from_argparse_args(args)
dm.prepare_data()
dm.setup()
def test_dm_pickle_after_init(tmpdir):
dm = TrialMNISTDataModule()
pickle.dumps(dm)
def test_train_loop_only(tmpdir):
dm = TrialMNISTDataModule(tmpdir)
model = EvalModelTemplate()
model.validation_step = None
model.validation_step_end = None
model.validation_epoch_end = None
model.test_step = None
model.test_step_end = None
model.test_epoch_end = None
trainer = Trainer(
default_root_dir=tmpdir,
max_epochs=3,
weights_summary=None,
)
# fit model
result = trainer.fit(model, dm)
assert result == 1
assert trainer.callback_metrics['loss'] < 0.6
def test_train_val_loop_only(tmpdir):
reset_seed()
dm = TrialMNISTDataModule(tmpdir)
model = EvalModelTemplate()
model.validation_step = None
model.validation_step_end = None
model.validation_epoch_end = None
trainer = Trainer(
default_root_dir=tmpdir,
max_epochs=3,
weights_summary=None,
)
# fit model
result = trainer.fit(model, dm)
assert result == 1
assert trainer.callback_metrics['loss'] < 0.6
def test_test_loop_only(tmpdir):
reset_seed()
dm = TrialMNISTDataModule(tmpdir)
model = EvalModelTemplate()
trainer = Trainer(
default_root_dir=tmpdir,
max_epochs=3,
weights_summary=None,
)
trainer.test(model, datamodule=dm)
def test_full_loop(tmpdir):
reset_seed()
dm = TrialMNISTDataModule(tmpdir)
model = EvalModelTemplate()
trainer = Trainer(
default_root_dir=tmpdir,
max_epochs=3,
weights_summary=None,
deterministic=True,
)
# fit model
result = trainer.fit(model, dm)
assert result == 1
# test
result = trainer.test(datamodule=dm)
result = result[0]
assert result['test_acc'] > 0.8
@pytest.mark.skipif(torch.cuda.device_count() < 1, reason="test requires multi-GPU machine")
def test_full_loop_single_gpu(tmpdir):
reset_seed()
dm = TrialMNISTDataModule(tmpdir)
model = EvalModelTemplate()
trainer = Trainer(
default_root_dir=tmpdir,
max_epochs=3,
weights_summary=None,
gpus=1,
deterministic=True,
)
# fit model
result = trainer.fit(model, dm)
assert result == 1
# test
result = trainer.test(datamodule=dm)
result = result[0]
assert result['test_acc'] > 0.8
@pytest.mark.skipif(torch.cuda.device_count() < 2, reason="test requires multi-GPU machine")
def test_full_loop_dp(tmpdir):
reset_seed()
dm = TrialMNISTDataModule(tmpdir)
model = EvalModelTemplate()
trainer = Trainer(
default_root_dir=tmpdir,
max_epochs=3,
weights_summary=None,
distributed_backend='dp',
gpus=2,
deterministic=True,
)
# fit model
result = trainer.fit(model, dm)
assert result == 1
# test
result = trainer.test(datamodule=dm)
result = result[0]
assert result['test_acc'] > 0.8
@pytest.mark.skipif(torch.cuda.device_count() < 2, reason="test requires multi-GPU machine")
def test_full_loop_ddp_spawn(tmpdir):
import os
os.environ['CUDA_VISIBLE_DEVICES'] = '0,1'
seed_everything(1234)
dm = TrialMNISTDataModule(tmpdir)
model = EvalModelTemplate()
trainer = Trainer(
default_root_dir=tmpdir,
max_epochs=5,
weights_summary=None,
distributed_backend='ddp_spawn',
gpus=[0, 1],
deterministic=True,
)
# fit model
result = trainer.fit(model, dm)
assert result == 1
# test
result = trainer.test(datamodule=dm)
result = result[0]
assert result['test_acc'] > 0.8
@pytest.mark.skipif(torch.cuda.device_count() < 1, reason="test requires multi-GPU machine")
def test_dm_transfer_batch_to_device(tmpdir):
class CustomBatch:
def __init__(self, data):
self.samples = data[0]
self.targets = data[1]
class CurrentTestDM(LightningDataModule):
hook_called = False
def transfer_batch_to_device(self, data, device):
self.hook_called = True
if isinstance(data, CustomBatch):
data.samples = data.samples.to(device)
data.targets = data.targets.to(device)
else:
data = super().transfer_batch_to_device(data, device)
return data
model = EvalModelTemplate()
dm = CurrentTestDM()
batch = CustomBatch((torch.zeros(5, 28), torch.ones(5, 1, dtype=torch.long)))
trainer = Trainer()
# running .fit() would require us to implement custom data loaders, we mock the model reference instead
trainer.get_model = MagicMock(return_value=model)
if is_overridden('transfer_batch_to_device', dm):
model.transfer_batch_to_device = dm.transfer_batch_to_device
batch_gpu = trainer.transfer_batch_to_gpu(batch, 0)
expected = torch.device('cuda', 0)
assert dm.hook_called
assert batch_gpu.samples.device == batch_gpu.targets.device == expected