forked from Lightning-AI/pytorch-lightning
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_neptune.py
95 lines (68 loc) · 3.56 KB
/
test_neptune.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
from unittest.mock import patch, MagicMock
import torch
from pytorch_lightning import Trainer
from pytorch_lightning.loggers import NeptuneLogger
from tests.base import EvalModelTemplate
@patch('pytorch_lightning.loggers.neptune.neptune')
def test_neptune_online(neptune):
logger = NeptuneLogger(api_key='test', project_name='project')
created_experiment = neptune.Session.with_default_backend().get_project().create_experiment()
# It's important to check if the internal variable _experiment was initialized in __init__.
# Calling logger.experiment would cause a side-effect of initializing _experiment,
# if it wasn't already initialized.
assert logger._experiment == created_experiment
assert logger.name == created_experiment.name
assert logger.version == created_experiment.id
@patch('pytorch_lightning.loggers.neptune.neptune')
def test_neptune_offline(neptune):
logger = NeptuneLogger(offline_mode=True)
neptune.Session.assert_called_once_with(backend=neptune.OfflineBackend())
assert logger.experiment == neptune.Session().get_project().create_experiment()
@patch('pytorch_lightning.loggers.neptune.neptune')
def test_neptune_additional_methods(neptune):
logger = NeptuneLogger(api_key='test', project_name='project')
created_experiment = neptune.Session.with_default_backend().get_project().create_experiment()
logger.log_metric('test', torch.ones(1))
created_experiment.log_metric.assert_called_once_with('test', torch.ones(1))
created_experiment.log_metric.reset_mock()
logger.log_metric('test', 1.0)
created_experiment.log_metric.assert_called_once_with('test', 1.0)
created_experiment.log_metric.reset_mock()
logger.log_metric('test', 1.0, step=2)
created_experiment.log_metric.assert_called_once_with('test', x=2, y=1.0)
created_experiment.log_metric.reset_mock()
logger.log_text('test', 'text')
created_experiment.log_metric.assert_called_once_with('test', 'text')
created_experiment.log_metric.reset_mock()
logger.log_image('test', 'image file')
created_experiment.log_image.assert_called_once_with('test', 'image file')
created_experiment.log_image.reset_mock()
logger.log_image('test', 'image file', step=2)
created_experiment.log_image.assert_called_once_with('test', x=2, y='image file')
created_experiment.log_image.reset_mock()
logger.log_artifact('file')
created_experiment.log_artifact.assert_called_once_with('file', None)
logger.set_property('property', 10)
created_experiment.set_property.assert_called_once_with('property', 10)
logger.append_tags('one tag')
created_experiment.append_tags.assert_called_once_with('one tag')
created_experiment.append_tags.reset_mock()
logger.append_tags(['two', 'tags'])
created_experiment.append_tags.assert_called_once_with('two', 'tags')
def test_neptune_leave_open_experiment_after_fit(tmpdir):
"""Verify that neptune experiment was closed after training"""
model = EvalModelTemplate()
def _run_training(logger):
logger._experiment = MagicMock()
trainer = Trainer(
default_root_dir=tmpdir,
max_epochs=1,
limit_train_batches=0.05,
logger=logger,
)
trainer.fit(model)
return logger
logger_close_after_fit = _run_training(NeptuneLogger(offline_mode=True))
assert logger_close_after_fit._experiment.stop.call_count == 1
logger_open_after_fit = _run_training(NeptuneLogger(offline_mode=True, close_after_fit=False))
assert logger_open_after_fit._experiment.stop.call_count == 0