forked from talent-plan/tinysql
-
Notifications
You must be signed in to change notification settings - Fork 0
/
expression.go
556 lines (494 loc) · 15.8 KB
/
expression.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
// Copyright 2016 PingCAP, Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// See the License for the specific language governing permissions and
// limitations under the License.
package expression
import (
goJSON "encoding/json"
"fmt"
"sync"
"github.com/pingcap/errors"
"github.com/pingcap/tidb/parser/ast"
"github.com/pingcap/tidb/parser/model"
"github.com/pingcap/tidb/parser/mysql"
"github.com/pingcap/tidb/parser/terror"
"github.com/pingcap/tidb/sessionctx"
"github.com/pingcap/tidb/sessionctx/stmtctx"
"github.com/pingcap/tidb/types"
"github.com/pingcap/tidb/util/chunk"
)
// These are byte flags used for `HashCode()`.
const (
constantFlag byte = 0
columnFlag byte = 1
scalarFunctionFlag byte = 3
)
// EvalAstExpr evaluates ast expression directly.
var EvalAstExpr func(sctx sessionctx.Context, expr ast.ExprNode) (types.Datum, error)
// VecExpr contains all vectorized evaluation methods.
type VecExpr interface {
// Vectorized returns if this expression supports vectorized evaluation.
Vectorized() bool
// VecEvalInt evaluates this expression in a vectorized manner.
VecEvalInt(ctx sessionctx.Context, input *chunk.Chunk, result *chunk.Column) error
// VecEvalReal evaluates this expression in a vectorized manner.
VecEvalReal(ctx sessionctx.Context, input *chunk.Chunk, result *chunk.Column) error
// VecEvalString evaluates this expression in a vectorized manner.
VecEvalString(ctx sessionctx.Context, input *chunk.Chunk, result *chunk.Column) error
}
// Expression represents all scalar expression in SQL.
type Expression interface {
fmt.Stringer
goJSON.Marshaler
VecExpr
// Eval evaluates an expression through a row.
Eval(row chunk.Row) (types.Datum, error)
// EvalInt returns the int64 representation of expression.
EvalInt(ctx sessionctx.Context, row chunk.Row) (val int64, isNull bool, err error)
// EvalReal returns the float64 representation of expression.
EvalReal(ctx sessionctx.Context, row chunk.Row) (val float64, isNull bool, err error)
// EvalString returns the string representation of expression.
EvalString(ctx sessionctx.Context, row chunk.Row) (val string, isNull bool, err error)
// GetType gets the type that the expression returns.
GetType() *types.FieldType
// Clone copies an expression totally.
Clone() Expression
// Equal checks whether two expressions are equal.
Equal(ctx sessionctx.Context, e Expression) bool
// IsCorrelated checks if this expression has correlated key.
IsCorrelated() bool
// ConstItem checks if this expression is constant item, regardless of query evaluation state.
// A constant item can be eval() when build a plan.
// An expression is constant item if it:
// refers no tables.
// refers no subqueries that refers any tables.
// refers no non-deterministic functions.
// refers no statement parameters.
ConstItem() bool
// Decorrelate try to decorrelate the expression by schema.
Decorrelate(schema *Schema) Expression
// ResolveIndices resolves indices by the given schema. It will copy the original expression and return the copied one.
ResolveIndices(schema *Schema) (Expression, error)
// resolveIndices is called inside the `ResolveIndices` It will perform on the expression itself.
resolveIndices(schema *Schema) error
// ExplainInfo returns operator information to be explained.
ExplainInfo() string
// HashCode creates the hashcode for expression which can be used to identify itself from other expression.
// It generated as the following:
// Constant: ConstantFlag+encoded value
// Column: ColumnFlag+encoded value
// ScalarFunction: SFFlag+encoded function name + encoded arg_1 + encoded arg_2 + ...
HashCode(sc *stmtctx.StatementContext) []byte
}
// CNFExprs stands for a CNF expression.
type CNFExprs []Expression
// Clone clones itself.
func (e CNFExprs) Clone() CNFExprs {
cnf := make(CNFExprs, 0, len(e))
for _, expr := range e {
cnf = append(cnf, expr.Clone())
}
return cnf
}
// Shallow makes a shallow copy of itself.
func (e CNFExprs) Shallow() CNFExprs {
cnf := make(CNFExprs, 0, len(e))
cnf = append(cnf, e...)
return cnf
}
// EvalBool evaluates expression list to a boolean value. The first returned value
// indicates bool result of the expression list, the second returned value indicates
// whether the result of the expression list is null, it can only be true when the
// first returned values is false.
func EvalBool(ctx sessionctx.Context, exprList CNFExprs, row chunk.Row) (bool, bool, error) {
hasNull := false
for _, expr := range exprList {
data, err := expr.Eval(row)
if err != nil {
return false, false, err
}
if data.IsNull() {
return false, false, nil
}
i, err := data.ToBool(ctx.GetSessionVars().StmtCtx)
if err != nil {
return false, false, err
}
if i == 0 {
return false, false, nil
}
}
if hasNull {
return false, true, nil
}
return true, false, nil
}
var (
defaultChunkSize = 1024
selPool = sync.Pool{
New: func() interface{} {
return make([]int, defaultChunkSize)
},
}
zeroPool = sync.Pool{
New: func() interface{} {
return make([]int8, defaultChunkSize)
},
}
)
func allocSelSlice(n int) []int {
if n > defaultChunkSize {
return make([]int, n)
}
return selPool.Get().([]int)
}
func deallocateSelSlice(sel []int) {
if cap(sel) <= defaultChunkSize {
selPool.Put(sel)
}
}
func allocZeroSlice(n int) []int8 {
if n > defaultChunkSize {
return make([]int8, n)
}
return zeroPool.Get().([]int8)
}
func deallocateZeroSlice(isZero []int8) {
if cap(isZero) <= defaultChunkSize {
zeroPool.Put(isZero)
}
}
// VecEvalBool does the same thing as EvalBool but it works in a vectorized manner.
func VecEvalBool(ctx sessionctx.Context, exprList CNFExprs, input *chunk.Chunk, selected, nulls []bool) ([]bool, []bool, error) {
// If input.Sel() != nil, we will call input.SetSel(nil) to clear the sel slice in input chunk.
// After the function finished, then we reset the input.Sel().
// The caller will handle the input.Sel() and selected slices.
defer input.SetSel(input.Sel())
input.SetSel(nil)
n := input.NumRows()
selected = selected[:0]
nulls = nulls[:0]
for i := 0; i < n; i++ {
selected = append(selected, false)
nulls = append(nulls, false)
}
sel := allocSelSlice(n)
defer deallocateSelSlice(sel)
sel = sel[:0]
for i := 0; i < n; i++ {
sel = append(sel, i)
}
input.SetSel(sel)
// In isZero slice, -1 means Null, 0 means zero, 1 means not zero
isZero := allocZeroSlice(n)
defer deallocateZeroSlice(isZero)
for _, expr := range exprList {
eType := expr.GetType().EvalType()
buf, err := globalColumnAllocator.get(eType, n)
if err != nil {
return nil, nil, err
}
if err := VecEval(ctx, expr, input, buf); err != nil {
return nil, nil, err
}
err = toBool(ctx.GetSessionVars().StmtCtx, eType, buf, sel, isZero)
if err != nil {
return nil, nil, err
}
j := 0
for i := range sel {
if isZero[i] == -1 {
if eType != types.ETInt {
continue
}
// In this case, we set this row to null and let it pass this filter.
// The null flag may be set to false later by other expressions in some cases.
nulls[sel[i]] = true
sel[j] = sel[i]
j++
continue
}
if isZero[i] == 0 {
continue
}
sel[j] = sel[i] // this row passes this filter
j++
}
sel = sel[:j]
input.SetSel(sel)
globalColumnAllocator.put(buf)
}
for _, i := range sel {
if !nulls[i] {
selected[i] = true
}
}
return selected, nulls, nil
}
func toBool(sc *stmtctx.StatementContext, eType types.EvalType, buf *chunk.Column, sel []int, isZero []int8) error {
var err error
switch eType {
case types.ETInt:
i64s := buf.Int64s()
for i := range sel {
if buf.IsNull(i) {
isZero[i] = -1
} else {
if i64s[i] == 0 {
isZero[i] = 0
} else {
isZero[i] = 1
}
}
}
case types.ETReal:
f64s := buf.Float64s()
for i := range sel {
if buf.IsNull(i) {
isZero[i] = -1
} else {
if types.RoundFloat(f64s[i]) == 0 {
isZero[i] = 0
} else {
isZero[i] = 1
}
}
}
case types.ETString:
for i := range sel {
if buf.IsNull(i) {
isZero[i] = -1
} else {
iVal, err1 := types.StrToInt(sc, buf.GetString(i))
err = err1
if iVal == 0 {
isZero[i] = 0
} else {
isZero[i] = 1
}
}
}
}
return errors.Trace(err)
}
// VecEval evaluates this expr according to its type.
func VecEval(ctx sessionctx.Context, expr Expression, input *chunk.Chunk, result *chunk.Column) (err error) {
switch expr.GetType().EvalType() {
case types.ETInt:
err = expr.VecEvalInt(ctx, input, result)
case types.ETReal:
err = expr.VecEvalReal(ctx, input, result)
case types.ETString:
err = expr.VecEvalString(ctx, input, result)
default:
err = errors.New(fmt.Sprintf("invalid eval type %v", expr.GetType().EvalType()))
}
return
}
// composeConditionWithBinaryOp composes condition with binary operator into a balance deep tree, which benefits a lot for pb decoder/encoder.
func composeConditionWithBinaryOp(ctx sessionctx.Context, conditions []Expression, funcName string) Expression {
length := len(conditions)
if length == 0 {
return nil
}
if length == 1 {
return conditions[0]
}
expr := NewFunctionInternal(ctx, funcName,
types.NewFieldType(mysql.TypeTiny),
composeConditionWithBinaryOp(ctx, conditions[:length/2], funcName),
composeConditionWithBinaryOp(ctx, conditions[length/2:], funcName))
return expr
}
// ComposeCNFCondition composes CNF items into a balance deep CNF tree, which benefits a lot for pb decoder/encoder.
func ComposeCNFCondition(ctx sessionctx.Context, conditions ...Expression) Expression {
return composeConditionWithBinaryOp(ctx, conditions, ast.LogicAnd)
}
// ComposeDNFCondition composes DNF items into a balance deep DNF tree.
func ComposeDNFCondition(ctx sessionctx.Context, conditions ...Expression) Expression {
return composeConditionWithBinaryOp(ctx, conditions, ast.LogicOr)
}
func extractBinaryOpItems(conditions *ScalarFunction, funcName string) []Expression {
var ret []Expression
for _, arg := range conditions.GetArgs() {
if sf, ok := arg.(*ScalarFunction); ok && sf.FuncName.L == funcName {
ret = append(ret, extractBinaryOpItems(sf, funcName)...)
} else {
ret = append(ret, arg)
}
}
return ret
}
// FlattenDNFConditions extracts DNF expression's leaf item.
// e.g. or(or(a=1, a=2), or(a=3, a=4)), we'll get [a=1, a=2, a=3, a=4].
func FlattenDNFConditions(DNFCondition *ScalarFunction) []Expression {
return extractBinaryOpItems(DNFCondition, ast.LogicOr)
}
// FlattenCNFConditions extracts CNF expression's leaf item.
// e.g. and(and(a>1, a>2), and(a>3, a>4)), we'll get [a>1, a>2, a>3, a>4].
func FlattenCNFConditions(CNFCondition *ScalarFunction) []Expression {
return extractBinaryOpItems(CNFCondition, ast.LogicAnd)
}
// Assignment represents a set assignment in Update, such as
// Update t set c1 = hex(12), c2 = c3 where c2 = 1
type Assignment struct {
Col *Column
// ColName indicates its original column name in table schema. It's used for outputting helping message when executing meets some errors.
ColName model.CIStr
Expr Expression
}
// VarAssignment represents a variable assignment in Set, such as set global a = 1.
type VarAssignment struct {
Name string
Expr Expression
IsDefault bool
IsGlobal bool
IsSystem bool
}
// splitNormalFormItems split CNF(conjunctive normal form) like "a and b and c", or DNF(disjunctive normal form) like "a or b or c"
func splitNormalFormItems(onExpr Expression, funcName string) []Expression {
switch v := onExpr.(type) {
case *ScalarFunction:
if v.FuncName.L == funcName {
var ret []Expression
for _, arg := range v.GetArgs() {
ret = append(ret, splitNormalFormItems(arg, funcName)...)
}
return ret
}
}
return []Expression{onExpr}
}
// SplitCNFItems splits CNF items.
// CNF means conjunctive normal form, e.g. "a and b and c".
func SplitCNFItems(onExpr Expression) []Expression {
return splitNormalFormItems(onExpr, ast.LogicAnd)
}
// SplitDNFItems splits DNF items.
// DNF means disjunctive normal form, e.g. "a or b or c".
func SplitDNFItems(onExpr Expression) []Expression {
return splitNormalFormItems(onExpr, ast.LogicOr)
}
// EvaluateExprWithNull sets columns in schema as null and calculate the final result of the scalar function.
// If the Expression is a non-constant value, it means the result is unknown.
func EvaluateExprWithNull(ctx sessionctx.Context, schema *Schema, expr Expression) Expression {
switch x := expr.(type) {
case *ScalarFunction:
args := make([]Expression, len(x.GetArgs()))
for i, arg := range x.GetArgs() {
args[i] = EvaluateExprWithNull(ctx, schema, arg)
}
return NewFunctionInternal(ctx, x.FuncName.L, x.RetType, args...)
case *Column:
if !schema.Contains(x) {
return x
}
return &Constant{Value: types.Datum{}, RetType: types.NewFieldType(mysql.TypeNull)}
}
return expr
}
// TableInfo2SchemaAndNames converts the TableInfo to the schema and name slice.
func TableInfo2SchemaAndNames(ctx sessionctx.Context, dbName model.CIStr, tbl *model.TableInfo) (*Schema, []*types.FieldName) {
cols, names := ColumnInfos2ColumnsAndNames(ctx, dbName, tbl.Name, tbl.Columns)
keys := make([]KeyInfo, 0, len(tbl.Indices)+1)
for _, idx := range tbl.Indices {
if !idx.Unique || idx.State != model.StatePublic {
continue
}
ok := true
newKey := make([]*Column, 0, len(idx.Columns))
for _, idxCol := range idx.Columns {
find := false
for i, col := range tbl.Columns {
if idxCol.Name.L == col.Name.L {
if !mysql.HasNotNullFlag(col.Flag) {
break
}
newKey = append(newKey, cols[i])
find = true
break
}
}
if !find {
ok = false
break
}
}
if ok {
keys = append(keys, newKey)
}
}
if tbl.PKIsHandle {
for i, col := range tbl.Columns {
if mysql.HasPriKeyFlag(col.Flag) {
keys = append(keys, KeyInfo{cols[i]})
break
}
}
}
schema := NewSchema(cols...)
schema.SetUniqueKeys(keys)
return schema, names
}
// ColumnInfos2ColumnsAndNames converts the ColumnInfo to the *Column and NameSlice.
func ColumnInfos2ColumnsAndNames(ctx sessionctx.Context, dbName, tblName model.CIStr, colInfos []*model.ColumnInfo) ([]*Column, types.NameSlice) {
columns := make([]*Column, 0, len(colInfos))
names := make([]*types.FieldName, 0, len(colInfos))
for i, col := range colInfos {
if col.State != model.StatePublic {
continue
}
names = append(names, &types.FieldName{
OrigTblName: tblName,
OrigColName: col.Name,
DBName: dbName,
TblName: tblName,
ColName: col.Name,
})
newCol := &Column{
RetType: &col.FieldType,
ID: col.ID,
UniqueID: ctx.GetSessionVars().AllocPlanColumnID(),
Index: col.Offset,
OrigName: names[i].String(),
}
columns = append(columns, newCol)
}
return columns, names
}
// NewValuesFunc creates a new values function.
func NewValuesFunc(ctx sessionctx.Context, offset int, retTp *types.FieldType) *ScalarFunction {
fc := &valuesFunctionClass{baseFunctionClass{ast.Values, 0, 0}, offset, retTp}
bt, err := fc.getFunction(ctx, nil)
terror.Log(err)
return &ScalarFunction{
FuncName: model.NewCIStr(ast.Values),
RetType: retTp,
Function: bt,
}
}
// FindFieldName finds the column name from NameSlice.
func FindFieldName(names types.NameSlice, astCol *ast.ColumnName) (int, error) {
dbName, tblName, colName := astCol.Schema, astCol.Table, astCol.Name
idx := -1
for i, name := range names {
if (dbName.L == "" || dbName.L == name.DBName.L) &&
(tblName.L == "" || tblName.L == name.TblName.L) &&
(colName.L == name.ColName.L) {
if idx == -1 {
idx = i
} else {
return -1, errNonUniq.GenWithStackByArgs(name.String(), "field list")
}
}
}
return idx, nil
}