forked from je-santos/MPLBM-UT
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpore_utils.py
228 lines (166 loc) · 7.9 KB
/
pore_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
import numpy as np
from skimage import measure
import skimage.transform as skit
from scipy.ndimage.morphology import distance_transform_edt as edist
import re
import os
from edt import edt
import porespy as ps
def create_geom_edist(rock, args, nw_fluid_mask):
if args.swapXZ:
rock = rock.transpose([2, 1, 0])
if args.scale_2:
NotImplementedError('Feature not yet implemented')
erock = edist(rock)
# make sure all the BCs have bounce back nodes
erock[0, :, :] = 1
erock[:, 0, :] = 1
erock[:, :, 0] = 1
erock[-1, :, :] = 1
erock[:, -1, :] = 1
erock[:, :, -1] = 1
# re open the pores
erock[rock==0] = 0
# Get the final matrix [0,1,2]
erock[(erock>0)*(erock<2)] = 1
erock[erock>1] = 2
if args.add_mesh:
NotImplementedError('Feature not yet implemented')
if args.num_slices:
erock = np.pad(erock, [(args.num_slices,args.num_slices), (0,0), (0,0)])
if args.print_size:
size = erock.shape
geom_name = f'{args.name}_{size[0]}_{size[1]}_{size[2]}'
else:
geom_name = args.name
# Save
erock = erock.astype(np.int16)
erock[erock == 0] = 2608 # pore space / w fluid
erock[erock == 1] = 2609 # boundary
erock[erock == 2] = 2610 # grains
erock[nw_fluid_mask == 3] = 2611 # add nw fluid back in if needed
erock = erock.astype(np.int16)
return erock, geom_name
def create_nw_fluid_mask(rock, args):
# Save indices for NW phase; can't do Euclidean distance properly with them.
# Also need to take into account: (1) transpose and (2) number of slices added
rock_tmp = np.copy(rock)
if args.swapXZ:
rock_tmp = rock_tmp.transpose([2, 1, 0])
if args.num_slices:
if args.set_inlet_outlet_fluids == True:
if args.inlet_fluid == 'fluid 1':
inlet_fluid = 3 # Set to fluid 1, NW phase
elif args.inlet_fluid == 'fluid 2':
inlet_fluid = 0 # Set to fluid 2, W phase
else:
raise ValueError('Please make sure inlet fluid set to "fluid 1" or "fluid 2"')
if args.outlet_fluid == 'fluid 1':
outlet_fluid = 3 # Set to fluid 1, NW phase
elif args.outlet_fluid == 'fluid 2':
outlet_fluid = 0 # Set to fluid 2, W phase
else:
raise ValueError('Please make sure outlet fluid set to "fluid 1" or "fluid 2"')
else:
inlet_fluid = 0
outlet_fluid = 0
rock_tmp = np.pad(rock_tmp, [(args.num_slices, args.num_slices),(0, 0),(0, 0)],
'constant', constant_values=(inlet_fluid, outlet_fluid))
# There's currently an instability when NW fluid is right up against the geom...
# The best solution will likely be to add a mesh up against the inlet and outlet?
# n = args.num_slices # inlet index
# rock_tmp[n-2:n-1,:,:] = 0 # Layer of W fluid at start of geom for stability
# rock_tmp[-n:-n+1, :, :] = 0 # Layer of W fluid at end of geom for stability
# import matplotlib.pyplot as plt
# plt.figure(figsize=[3,3])
# plt.imshow(rock_tmp[:,:,40])
# plt.colorbar()
# plt.show()
fluid_mask = np.where(rock_tmp == 3, rock_tmp, 0) # Save NW whole block to preserve orientation
rock = np.where(rock == 3, 0, rock) # Finally, remove Nw phase from original image for rest of processing
return rock, fluid_mask
def erase_regions(rock):
# find connected-comps
blobs_labels = measure.label(rock, background=1, connectivity=1)
#vols = [np.sum(blobs_labels==label) for label in range(np.max(blobs_labels))]
# it seems that label 1 is the largest comp, but gotta check
# delete non-connected regions
rock[blobs_labels>1] = 0
return rock
def run_porespy_drainage(inputs, wetting_angle, voxel_size):
# This function is just running PoreSpy drainage simulation on the image.
# Much of this is from the drainage simulation example in the PoreSpy docs,
# but there are a few modifications to make it compatible with MPLBM.
sim_dir = inputs['input output']['simulation directory']
input_dir = inputs['input output']['input folder']
geom_file_name = inputs['geometry']['file name']
data_type = inputs['geometry']['data type']
geom_file = sim_dir + '/' + input_dir + geom_file_name
Nx = inputs['geometry']['geometry size']['Nx']
Ny = inputs['geometry']['geometry size']['Ny']
Nz = inputs['geometry']['geometry size']['Nz']
nx = inputs['domain']['domain size']['nx']
ny = inputs['domain']['domain size']['ny']
nz = inputs['domain']['domain size']['nz']
swap_xz = inputs['domain']['swap xz']
geom_name = inputs['domain']['geom name']
image = np.fromfile(geom_file, dtype=data_type).reshape([Nx, Ny, Nz])
image = image[0:nz, 0:ny, 0:nx]
# Take into account user specified orientation
if swap_xz == True:
image = image.transpose([2, 1, 0])
image = ~np.array(image, dtype=bool) # Convert to bool and invert pores and grains for PoreSpy format
inlets = np.zeros_like(image) # Add inlets
inlets[:,:,0] = True # Make sure this is in XZ plane for correct orientation with Palabos
sigma = 0.15 # This is the value of sigma found from MPLBM experiments (See Young-Laplace example)
dt = edt(image) # Get distance transform
pc = -2 * sigma * np.cos(np.deg2rad(wetting_angle)) / (dt * voxel_size) # Use Washburn equation for Pc values
drn = ps.simulations.drainage(pc=pc, im=image, inlets=inlets, voxel_size=voxel_size, g=0)
np.save(f'{sim_dir}/{input_dir}{geom_name}_pc_image.npy', drn.im_pc)
np.save(f'{sim_dir}/{input_dir}{geom_name}_satn_image.npy', drn.im_satn)
np.save(f'{sim_dir}/{input_dir}{geom_name}_pc_data.npy', drn.pc)
np.save(f'{sim_dir}/{input_dir}{geom_name}_snwp_data.npy', drn.snwp)
return drn.im_pc, drn.im_satn, drn.pc, drn.snwp
def convert_porespy_drainage_to_mplbm(image_satn, Snw):
# Segment and convert from porespy to mplbm notation
# 1) porespy all -1 --> mplbm 0 (pores not invaded)
# 2) porespy all 0 --> mplbm 1 (grain)
# 3) porespy saturation of interest and below --> mplbm 3 (nw phase, invaded)
# 4) porespy above satn of interest --> mplbm 0 (w phase, not invaded)
mplbm_geom = np.zeros_like(image_satn)
mplbm_geom[image_satn == -1] = 0
mplbm_geom[image_satn == 0] = 1
mplbm_geom[(image_satn <= Snw) & (image_satn > 0)] = 3
mplbm_geom[image_satn > Snw] = 0
return mplbm_geom
def scale_geometry(geom, rescale_factor, data_type):
geom_shape = np.array(geom.shape)
scaled_geom_shape = np.array(geom.shape)*rescale_factor
print(f'Scaling geometry from {geom_shape} to {scaled_geom_shape.astype(int)}')
# Rescale geometry
geom = skit.rescale(geom, rescale_factor, anti_aliasing=False,
order=0) # order=0 means nearest neighbor interpolation (keeps image binary)
# Ensure image has 0 as pore space and 1 as grains
geom = edist(geom)
geom[geom==0] = 0
geom[geom>0] = 1
# Change to specified data type
geom = geom.astype(data_type)
return geom
def natural_sort(l):
convert = lambda text: int(text) if text.isdigit() else text.lower()
alphanum_key = lambda key: [convert(c) for c in re.split('([0-9]+)', key)]
return sorted(l, key=alphanum_key)
def find_line_in_file(file_name, line_to_match, data_to_add_line_index):
file = open(file_name)
data = np.array([])
for line in file:
if line_to_match in line:
line_split = line.split()
data = np.append(data, float(line_split[data_to_add_line_index]))
file.close()
return data
def replace_line_in_file(file_to_edit, line_to_find_and_replace, replacement_line):
search_and_replace_command = 'sed -i "/^' + line_to_find_and_replace + r"/c\\" + replacement_line + '" ' + file_to_edit
os.system(search_and_replace_command)
return