forked from iden3/snarkjs
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfflonk_prove.js
1285 lines (1020 loc) · 55.1 KB
/
fflonk_prove.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
Copyright 2022 iden3 association.
This file is part of snarkjs.
snarkjs is a free software: you can redistribute it and/or
modify it under the terms of the GNU General Public License as published by the
Free Software Foundation, either version 3 of the License, or (at your option)
any later version.
snarkjs is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details.
You should have received a copy of the GNU General Public License along with
snarkjs. If not, see <https://www.gnu.org/licenses/>.
*/
import * as binFileUtils from "@iden3/binfileutils";
import * as zkeyUtils from "./zkey_utils.js";
import * as wtnsUtils from "./wtns_utils.js";
import { BigBuffer, Scalar, utils } from "ffjavascript";
import { FFLONK_PROTOCOL_ID } from "./zkey_constants.js";
import {
ZKEY_FF_A_MAP_SECTION,
ZKEY_FF_ADDITIONS_SECTION,
ZKEY_FF_B_MAP_SECTION,
ZKEY_FF_C0_SECTION,
ZKEY_FF_C_MAP_SECTION,
ZKEY_FF_LAGRANGE_SECTION,
ZKEY_FF_PTAU_SECTION,
ZKEY_FF_QC_SECTION,
ZKEY_FF_QL_SECTION,
ZKEY_FF_QM_SECTION,
ZKEY_FF_QO_SECTION,
ZKEY_FF_QR_SECTION,
ZKEY_FF_SIGMA1_SECTION,
ZKEY_FF_SIGMA2_SECTION,
ZKEY_FF_SIGMA3_SECTION,
} from "./fflonk_constants.js";
import { Keccak256Transcript } from "./Keccak256Transcript.js";
import { Proof } from "./proof.js";
import { Polynomial } from "./polynomial/polynomial.js";
import { Evaluations } from "./polynomial/evaluations.js";
import { CPolynomial } from "./polynomial/cpolynomial.js";
const { stringifyBigInts } = utils;
export default async function fflonkProve(zkeyFileName, witnessFileName, logger) {
if (logger) logger.info("FFLONK PROVER STARTED");
// Read witness file
if (logger) logger.info("> Reading witness file");
const {
fd: fdWtns,
sections: wtnsSections
} = await binFileUtils.readBinFile(witnessFileName, "wtns", 2, 1 << 25, 1 << 23);
const wtns = await wtnsUtils.readHeader(fdWtns, wtnsSections);
//Read zkey file
if (logger) logger.info("> Reading zkey file");
const {
fd: fdZKey,
sections: zkeySections
} = await binFileUtils.readBinFile(zkeyFileName, "zkey", 2, 1 << 25, 1 << 23);
const zkey = await zkeyUtils.readHeader(fdZKey, zkeySections);
if (zkey.protocolId !== FFLONK_PROTOCOL_ID) {
throw new Error("zkey file is not fflonk");
}
if (!Scalar.eq(zkey.r, wtns.q)) {
throw new Error("Curve of the witness does not match the curve of the proving key");
}
if (wtns.nWitness !== zkey.nVars - zkey.nAdditions) {
throw new Error(`Invalid witness length. Circuit: ${zkey.nVars}, witness: ${wtns.nWitness}, ${zkey.nAdditions}`);
}
const curve = zkey.curve;
const Fr = curve.Fr;
const sFr = curve.Fr.n8;
const sG1 = curve.G1.F.n8 * 2;
const sDomain = zkey.domainSize * sFr;
if (logger) {
logger.info("----------------------------");
logger.info(" FFLONK PROVE SETTINGS");
logger.info(` Curve: ${curve.name}`);
logger.info(` Circuit power: ${zkey.power}`);
logger.info(` Domain size: ${zkey.domainSize}`);
logger.info(` Vars: ${zkey.nVars}`);
logger.info(` Public vars: ${zkey.nPublic}`);
logger.info(` Constraints: ${zkey.nConstraints}`);
logger.info(` Additions: ${zkey.nAdditions}`);
logger.info("----------------------------");
}
//Read witness data
if (logger) logger.info("> Reading witness file data");
const buffWitness = await binFileUtils.readSection(fdWtns, wtnsSections, 2);
await fdWtns.close();
// First element in plonk is not used and can be any value. (But always the same).
// We set it to zero to go faster in the exponentiations.
buffWitness.set(Fr.zero, 0);
const buffInternalWitness = new BigBuffer(zkey.nAdditions * sFr);
let buffers = {};
let polynomials = {};
let evaluations = {};
// To divide prime fields the Extended Euclidean Algorithm for computing modular inverses is needed.
// NOTE: This is the equivalent of compute 1/denominator and then multiply it by the numerator.
// The Extended Euclidean Algorithm is expensive in terms of computation.
// For the special case where we need to do many modular inverses, there's a simple mathematical trick
// that allows us to compute many inverses, called Montgomery batch inversion.
// More info: https://vitalik.ca/general/2018/07/21/starks_part_3.html
// Montgomery batch inversion reduces the n inverse computations to a single one
// To save this (single) inverse computation on-chain, will compute it in proving time and send it to the verifier.
// The verifier will have to check:
// 1) the denominator is correct multiplying by himself non-inverted -> a * 1/a == 1
// 2) compute the rest of the denominators using the Montgomery batch inversion
// The inversions are:
// · denominator needed in step 8 and 9 of the verifier to multiply by 1/Z_H(xi)
// · denominator needed in step 10 and 11 of the verifier
// · denominator needed in the verifier when computing L_i^{S1}(X) and L_i^{S2}(X)
// · L_i i=1 to num public inputs, needed in step 6 and 7 of the verifier to compute L_1(xi) and PI(xi)
let toInverse = {};
let challenges = {};
let roots = {};
let proof = new Proof(curve, logger);
if (logger) logger.info(`> Reading Section ${ZKEY_FF_ADDITIONS_SECTION}. Additions`);
await calculateAdditions();
if (logger) logger.info(`> Reading Sections ${ZKEY_FF_SIGMA1_SECTION},${ZKEY_FF_SIGMA2_SECTION},${ZKEY_FF_SIGMA3_SECTION}. Sigma1, Sigma2 & Sigma 3`);
if (logger) logger.info("··· Reading Sigma polynomials ");
polynomials.Sigma1 = new Polynomial(new BigBuffer(sDomain), curve, logger);
polynomials.Sigma2 = new Polynomial(new BigBuffer(sDomain), curve, logger);
polynomials.Sigma3 = new Polynomial(new BigBuffer(sDomain), curve, logger);
await fdZKey.readToBuffer(polynomials.Sigma1.coef, 0, sDomain, zkeySections[ZKEY_FF_SIGMA1_SECTION][0].p);
await fdZKey.readToBuffer(polynomials.Sigma2.coef, 0, sDomain, zkeySections[ZKEY_FF_SIGMA2_SECTION][0].p);
await fdZKey.readToBuffer(polynomials.Sigma3.coef, 0, sDomain, zkeySections[ZKEY_FF_SIGMA3_SECTION][0].p);
if (logger) logger.info("··· Reading Sigma evaluations");
evaluations.Sigma1 = new Evaluations(new BigBuffer(sDomain * 4), curve, logger);
evaluations.Sigma2 = new Evaluations(new BigBuffer(sDomain * 4), curve, logger);
evaluations.Sigma3 = new Evaluations(new BigBuffer(sDomain * 4), curve, logger);
await fdZKey.readToBuffer(evaluations.Sigma1.eval, 0, sDomain * 4, zkeySections[ZKEY_FF_SIGMA1_SECTION][0].p + sDomain);
await fdZKey.readToBuffer(evaluations.Sigma2.eval, 0, sDomain * 4, zkeySections[ZKEY_FF_SIGMA2_SECTION][0].p + sDomain);
await fdZKey.readToBuffer(evaluations.Sigma3.eval, 0, sDomain * 4, zkeySections[ZKEY_FF_SIGMA3_SECTION][0].p + sDomain);
if (logger) logger.info(`> Reading Section ${ZKEY_FF_PTAU_SECTION}. Powers of Tau`);
const PTau = new BigBuffer(zkey.domainSize * 16 * sG1);
// domainSize * 9 + 18 = SRS length in the zkey saved in setup process.
// it corresponds to the maximum SRS length needed, specifically to commit C2
// notice that the reserved buffers size is zkey.domainSize * 16 * sG1 because a power of two buffer size is needed
// the remaining buffer not filled from SRS are set to 0
await fdZKey.readToBuffer(PTau, 0, (zkey.domainSize * 9 + 18) * sG1, zkeySections[ZKEY_FF_PTAU_SECTION][0].p);
// START FFLONK PROVER PROTOCOL
if (globalThis.gc) globalThis.gc();
// ROUND 1. Compute C1(X) polynomial
if (logger) logger.info("");
if (logger) logger.info("> ROUND 1");
await round1();
delete polynomials.T0;
delete evaluations.QL;
delete evaluations.QR;
delete evaluations.QM;
delete evaluations.QO;
delete evaluations.QC;
if (globalThis.gc) globalThis.gc();
// ROUND 2. Compute C2(X) polynomial
if (logger) logger.info("> ROUND 2");
await round2();
delete buffers.A;
delete buffers.B;
delete buffers.C;
delete evaluations.A;
delete evaluations.B;
delete evaluations.C;
delete evaluations.Sigma1;
delete evaluations.Sigma2;
delete evaluations.Sigma3;
delete evaluations.lagrange1;
delete evaluations.Z;
if (globalThis.gc) globalThis.gc();
// ROUND 3. Compute opening evaluations
if (logger) logger.info("> ROUND 3");
await round3();
delete polynomials.A;
delete polynomials.B;
delete polynomials.C;
delete polynomials.Z;
delete polynomials.T1;
delete polynomials.T2;
delete polynomials.Sigma1;
delete polynomials.Sigma2;
delete polynomials.Sigma3;
delete polynomials.QL;
delete polynomials.QR;
delete polynomials.QM;
delete polynomials.QC;
delete polynomials.QO;
if (globalThis.gc) globalThis.gc();
// ROUND 4. Compute W(X) polynomial
if (logger) logger.info("> ROUND 4");
await round4();
if (globalThis.gc) globalThis.gc();
// ROUND 5. Compute W'(X) polynomial
if (logger) logger.info("> ROUND 5");
await round5();
delete polynomials.C0;
delete polynomials.C1;
delete polynomials.C2;
delete polynomials.R1;
delete polynomials.R2;
delete polynomials.F;
delete polynomials.L;
delete polynomials.ZT;
delete polynomials.ZTS2;
await fdZKey.close();
if (globalThis.gc) globalThis.gc();
proof.addEvaluation("inv", getMontgomeryBatchedInverse());
// Prepare proof
let _proof = proof.toObjectProof();
_proof.protocol = "fflonk";
_proof.curve = curve.name;
// Prepare public inputs
let publicSignals = [];
for (let i = 1; i <= zkey.nPublic; i++) {
const i_sFr = i * sFr;
const pub = buffWitness.slice(i_sFr, i_sFr + sFr);
publicSignals.push(Scalar.fromRprLE(pub));
}
if (logger) logger.info("FFLONK PROVER FINISHED");
return {
proof: stringifyBigInts(_proof),
publicSignals: stringifyBigInts(publicSignals)
};
async function calculateAdditions() {
if (logger) logger.info("··· Computing additions");
const additionsBuff = await binFileUtils.readSection(fdZKey, zkeySections, ZKEY_FF_ADDITIONS_SECTION);
// sizes: wireId_x = 4 bytes (32 bits), factor_x = field size bits
// Addition form: wireId_a wireId_b factor_a factor_b (size is 4 + 4 + sFr + sFr)
const sSum = 8 + sFr * 2;
for (let i = 0; i < zkey.nAdditions; i++) {
if (logger && (0 !== i) && (i % 100000 === 0)) logger.info(` addition ${i}/${zkey.nAdditions}`);
// Read addition values
let offset = i * sSum;
const signalId1 = readUInt32(additionsBuff, offset);
offset += 4;
const signalId2 = readUInt32(additionsBuff, offset);
offset += 4;
const factor1 = additionsBuff.slice(offset, offset + sFr);
offset += sFr;
const factor2 = additionsBuff.slice(offset, offset + sFr);
// Get witness value
const witness1 = getWitness(signalId1);
const witness2 = getWitness(signalId2);
//Calculate final result
const result = Fr.add(Fr.mul(factor1, witness1), Fr.mul(factor2, witness2));
buffInternalWitness.set(result, sFr * i);
}
}
function readUInt32(b, o) {
const buff = b.slice(o, o + 4);
const buffV = new DataView(buff.buffer, buff.byteOffset, buff.byteLength);
return buffV.getUint32(0, true);
}
function getWitness(idx) {
let diff = zkey.nVars - zkey.nAdditions;
if (idx < diff) {
return buffWitness.slice(idx * sFr, idx * sFr + sFr);
} else if (idx < zkey.nVars) {
const offset = (idx - diff) * sFr;
return buffInternalWitness.slice(offset, offset + sFr);
}
return Fr.zero;
}
async function round1() {
// STEP 1.1 - Generate random blinding scalars (b_1, ..., b9) ∈ F
challenges.b = [];
for (let i = 1; i <= 9; i++) {
challenges.b[i] = Fr.random();
}
// STEP 1.2 - Compute wire polynomials a(X), b(X) and c(X)
if (logger) logger.info("> Computing A, B, C wire polynomials");
await computeWirePolynomials();
// STEP 1.3 - Compute the quotient polynomial T0(X)
if (logger) logger.info("> Computing T0 polynomial");
await computeT0();
// STEP 1.4 - Compute the FFT-style combination polynomial C1(X)
if (logger) logger.info("> Computing C1 polynomial");
await computeC1();
// The first output of the prover is ([C1]_1)
if (logger) logger.info("> Computing C1 multi exponentiation");
let commitC1 = await polynomials.C1.multiExponentiation(PTau, "C1");
proof.addPolynomial("C1", commitC1);
return 0;
async function computeWirePolynomials() {
if (logger) logger.info("··· Reading data from zkey file");
// Build A, B and C evaluations buffer from zkey and witness files
buffers.A = new BigBuffer(sDomain);
buffers.B = new BigBuffer(sDomain);
buffers.C = new BigBuffer(sDomain);
// Read zkey sections and fill the buffers
const aMapBuff = await binFileUtils.readSection(fdZKey, zkeySections, ZKEY_FF_A_MAP_SECTION);
const bMapBuff = await binFileUtils.readSection(fdZKey, zkeySections, ZKEY_FF_B_MAP_SECTION);
const cMapBuff = await binFileUtils.readSection(fdZKey, zkeySections, ZKEY_FF_C_MAP_SECTION);
// Compute all witness from signal ids and set them to A,B & C buffers
for (let i = 0; i < zkey.nConstraints; i++) {
const i_sFr = i * sFr;
const offset = i * 4;
// Compute A value from a signal id
const signalIdA = readUInt32(aMapBuff, offset);
buffers.A.set(getWitness(signalIdA), i_sFr);
// Compute B value from a signal id
const signalIdB = readUInt32(bMapBuff, offset);
buffers.B.set(getWitness(signalIdB), i_sFr);
// Compute C value from a signal id
const signalIdC = readUInt32(cMapBuff, offset);
buffers.C.set(getWitness(signalIdC), i_sFr);
}
// Blind a(X), b(X) and c(X) polynomials coefficients with blinding scalars b
buffers.A.set(challenges.b[1], sDomain - 64);
buffers.A.set(challenges.b[2], sDomain - 32);
buffers.B.set(challenges.b[3], sDomain - 64);
buffers.B.set(challenges.b[4], sDomain - 32);
buffers.C.set(challenges.b[5], sDomain - 64);
buffers.C.set(challenges.b[6], sDomain - 32);
buffers.A = await Fr.batchToMontgomery(buffers.A);
buffers.B = await Fr.batchToMontgomery(buffers.B);
buffers.C = await Fr.batchToMontgomery(buffers.C);
// Compute the coefficients of the wire polynomials a(X), b(X) and c(X) from A,B & C buffers
if (logger) logger.info("··· Computing A ifft");
polynomials.A = await Polynomial.fromEvaluations(buffers.A, curve, logger);
if (logger) logger.info("··· Computing B ifft");
polynomials.B = await Polynomial.fromEvaluations(buffers.B, curve, logger);
if (logger) logger.info("··· Computing C ifft");
polynomials.C = await Polynomial.fromEvaluations(buffers.C, curve, logger);
// Compute extended evaluations of a(X), b(X) and c(X) polynomials
if (logger) logger.info("··· Computing A fft");
evaluations.A = await Evaluations.fromPolynomial(polynomials.A, 4, curve, logger);
if (logger) logger.info("··· Computing B fft");
evaluations.B = await Evaluations.fromPolynomial(polynomials.B, 4, curve, logger);
if (logger) logger.info("··· Computing C fft");
evaluations.C = await Evaluations.fromPolynomial(polynomials.C, 4, curve, logger);
// Check degrees
if (polynomials.A.degree() >= zkey.domainSize) {
throw new Error("A Polynomial is not well calculated");
}
if (polynomials.B.degree() >= zkey.domainSize) {
throw new Error("B Polynomial is not well calculated");
}
if (polynomials.C.degree() >= zkey.domainSize) {
throw new Error("C Polynomial is not well calculated");
}
}
async function computeT0() {
if (logger) logger.info(`··· Reading sections ${ZKEY_FF_QL_SECTION}, ${ZKEY_FF_QR_SECTION}` +
`, ${ZKEY_FF_QM_SECTION}, ${ZKEY_FF_QO_SECTION}, ${ZKEY_FF_QC_SECTION}. Q selectors`);
// Reserve memory for Q's evaluations
evaluations.QL = new Evaluations(new BigBuffer(sDomain * 4), curve, logger);
evaluations.QR = new Evaluations(new BigBuffer(sDomain * 4), curve, logger);
evaluations.QM = new Evaluations(new BigBuffer(sDomain * 4), curve, logger);
evaluations.QO = new Evaluations(new BigBuffer(sDomain * 4), curve, logger);
evaluations.QC = new Evaluations(new BigBuffer(sDomain * 4), curve, logger);
// Read Q's evaluations from zkey file
await fdZKey.readToBuffer(evaluations.QL.eval, 0, sDomain * 4, zkeySections[ZKEY_FF_QL_SECTION][0].p + sDomain);
await fdZKey.readToBuffer(evaluations.QR.eval, 0, sDomain * 4, zkeySections[ZKEY_FF_QR_SECTION][0].p + sDomain);
await fdZKey.readToBuffer(evaluations.QM.eval, 0, sDomain * 4, zkeySections[ZKEY_FF_QM_SECTION][0].p + sDomain);
await fdZKey.readToBuffer(evaluations.QO.eval, 0, sDomain * 4, zkeySections[ZKEY_FF_QO_SECTION][0].p + sDomain);
await fdZKey.readToBuffer(evaluations.QC.eval, 0, sDomain * 4, zkeySections[ZKEY_FF_QC_SECTION][0].p + sDomain);
// Read Lagrange polynomials & evaluations from zkey file
const lagrangePolynomials = await binFileUtils.readSection(fdZKey, zkeySections, ZKEY_FF_LAGRANGE_SECTION);
evaluations.lagrange1 = new Evaluations(lagrangePolynomials, curve, logger);
// Reserve memory for buffers T0
buffers.T0 = new BigBuffer(sDomain * 4);
if (logger) logger.info("··· Computing T0 evaluations");
for (let i = 0; i < zkey.domainSize * 4; i++) {
if (logger && (0 !== i) && (i % 100000 === 0)) logger.info(` T0 evaluation ${i}/${zkey.domainSize * 4}`);
// Get related evaluations to compute current T0 evaluation
const a = evaluations.A.getEvaluation(i);
const b = evaluations.B.getEvaluation(i);
const c = evaluations.C.getEvaluation(i);
const ql = evaluations.QL.getEvaluation(i);
const qr = evaluations.QR.getEvaluation(i);
const qm = evaluations.QM.getEvaluation(i);
const qo = evaluations.QO.getEvaluation(i);
const qc = evaluations.QC.getEvaluation(i);
// Compute current public input
let pi = Fr.zero;
for (let j = 0; j < zkey.nPublic; j++) {
const offset = (j * 5 * zkey.domainSize) + zkey.domainSize + i;
const lPol = evaluations.lagrange1.getEvaluation(offset);
const aVal = buffers.A.slice(j * sFr, (j + 1) * sFr);
pi = Fr.sub(pi, Fr.mul(lPol, aVal));
}
//T0(X) = [q_L(X)·a(X) + q_R(X)·b(X) + q_M(X)·a(X)·b(X) + q_O(X)·c(X) + q_C(X) + PI(X)] · 1/Z_H(X)
// Compute first T0(X)·Z_H(X), so divide later the resulting polynomial by Z_H(X)
// expression 1 -> q_L(X)·a(X)
const e1 = Fr.mul(a, ql);
// expression 2 -> q_R(X)·b(X)
const e2 = Fr.mul(b, qr);
// expression 3 -> q_M(X)·a(X)·b(X)
const e3 = Fr.mul(Fr.mul(a, b), qm);
// expression 4 -> q_O(X)·c(X)
const e4 = Fr.mul(c, qo);
// t0 = expressions 1 + expression 2 + expression 3 + expression 4 + qc + pi
const t0 = Fr.add(e1, Fr.add(e2, Fr.add(e3, Fr.add(e4, Fr.add(qc, pi)))));
buffers.T0.set(t0, i * sFr);
}
if (logger) logger.info("buffer T0: " + buffers.T0.byteLength / sFr);
// Compute the coefficients of the polynomial T0(X) from buffers.T0
if (logger) logger.info("··· Computing T0 ifft");
polynomials.T0 = await Polynomial.fromEvaluations(buffers.T0, curve, logger);
if (logger) logger.info("T0 length: " + polynomials.T0.length());
if (logger) logger.info("T0 degree: " + polynomials.T0.degree());
// Divide the polynomial T0 by Z_H(X)
if (logger) logger.info("··· Computing T0 / ZH");
polynomials.T0.divByZerofier(zkey.domainSize, Fr.one);
// Check degree
if (polynomials.T0.degree() >= 2 * zkey.domainSize - 2) {
throw new Error(`T0 Polynomial is not well calculated (degree is ${polynomials.T0.degree()} and must be less than ${2 * zkey.domainSize + 2}`);
}
delete buffers.T0;
}
async function computeC1() {
let C1 = new CPolynomial(4, curve, logger);
C1.addPolynomial(0, polynomials.A);
C1.addPolynomial(1, polynomials.B);
C1.addPolynomial(2, polynomials.C);
C1.addPolynomial(3, polynomials.T0);
polynomials.C1 = C1.getPolynomial();
// Check degree
if (polynomials.C1.degree() >= 8 * zkey.domainSize - 8) {
throw new Error("C1 Polynomial is not well calculated");
}
}
}
async function round2() {
// STEP 2.1 - Compute permutation challenge beta and gamma ∈ F
// Compute permutation challenge beta
if (logger) logger.info("> Computing challenges beta and gamma");
const transcript = new Keccak256Transcript(curve);
// Add C0 to the transcript
transcript.addPolCommitment(zkey.C0);
// Add A to the transcript
for (let i = 0; i < zkey.nPublic; i++) {
transcript.addScalar(buffers.A.slice(i * sFr, i * sFr + sFr));
}
// Add C1 to the transcript
transcript.addPolCommitment(proof.getPolynomial("C1"));
challenges.beta = transcript.getChallenge();
if (logger) logger.info("··· challenges.beta: " + Fr.toString(challenges.beta));
// Compute permutation challenge gamma
transcript.reset();
transcript.addScalar(challenges.beta);
challenges.gamma = transcript.getChallenge();
if (logger) logger.info("··· challenges.gamma: " + Fr.toString(challenges.gamma));
// STEP 2.2 - Compute permutation polynomial z(X)
if (logger) logger.info("> Computing Z polynomial");
await computeZ();
// STEP 2.3 - Compute quotient polynomial T1(X) and T2(X)
if (logger) logger.info("> Computing T1 polynomial");
await computeT1();
if (logger) logger.info("> Computing T2 polynomial");
await computeT2();
// STEP 2.4 - Compute the FFT-style combination polynomial C2(X)
if (logger) logger.info("> Computing C2 polynomial");
await computeC2();
// The second output of the prover is ([C2]_1)
if (logger) logger.info("> Computing C2 multi exponentiation");
let commitC2 = await polynomials.C2.multiExponentiation(PTau, "C2");
proof.addPolynomial("C2", commitC2);
return 0;
async function computeZ() {
if (logger) logger.info("··· Computing Z evaluations");
let numArr = new BigBuffer(sDomain);
let denArr = new BigBuffer(sDomain);
// Set the first values to 1
numArr.set(Fr.one, 0);
denArr.set(Fr.one, 0);
// Set initial omega
let w = Fr.one;
for (let i = 0; i < zkey.domainSize; i++) {
if (logger && (0 !== i) && (i % 100000 === 0)) logger.info(` Z evaluation ${i}/${zkey.domainSize}`);
const i_sFr = i * sFr;
// Z(X) := numArr / denArr
// numArr := (a + beta·ω + gamma)(b + beta·ω·k1 + gamma)(c + beta·ω·k2 + gamma)
const betaw = Fr.mul(challenges.beta, w);
let num1 = buffers.A.slice(i_sFr, i_sFr + sFr);
num1 = Fr.add(num1, betaw);
num1 = Fr.add(num1, challenges.gamma);
let num2 = buffers.B.slice(i_sFr, i_sFr + sFr);
num2 = Fr.add(num2, Fr.mul(zkey.k1, betaw));
num2 = Fr.add(num2, challenges.gamma);
let num3 = buffers.C.slice(i_sFr, i_sFr + sFr);
num3 = Fr.add(num3, Fr.mul(zkey.k2, betaw));
num3 = Fr.add(num3, challenges.gamma);
let num = Fr.mul(num1, Fr.mul(num2, num3));
// denArr := (a + beta·sigma1 + gamma)(b + beta·sigma2 + gamma)(c + beta·sigma3 + gamma)
let den1 = buffers.A.slice(i_sFr, i_sFr + sFr);
den1 = Fr.add(den1, Fr.mul(challenges.beta, evaluations.Sigma1.getEvaluation(i * 4)));
den1 = Fr.add(den1, challenges.gamma);
let den2 = buffers.B.slice(i_sFr, i_sFr + sFr);
den2 = Fr.add(den2, Fr.mul(challenges.beta, evaluations.Sigma2.getEvaluation(i * 4)));
den2 = Fr.add(den2, challenges.gamma);
let den3 = buffers.C.slice(i_sFr, i_sFr + sFr);
den3 = Fr.add(den3, Fr.mul(challenges.beta, evaluations.Sigma3.getEvaluation(i * 4)));
den3 = Fr.add(den3, challenges.gamma);
let den = Fr.mul(den1, Fr.mul(den2, den3));
// Multiply current num value with the previous one saved in numArr
num = Fr.mul(numArr.slice(i_sFr, i_sFr + sFr), num);
numArr.set(num, ((i + 1) % zkey.domainSize) * sFr);
// Multiply current den value with the previous one saved in denArr
den = Fr.mul(denArr.slice(i_sFr, i_sFr + sFr), den);
denArr.set(den, ((i + 1) % zkey.domainSize) * sFr);
// Next omega
w = Fr.mul(w, Fr.w[zkey.power]);
}
// Compute the inverse of denArr to compute in the next command the
// division numArr/denArr by multiplying num · 1/denArr
denArr = await Fr.batchInverse(denArr);
// TODO: Do it in assembly and in parallel
// Multiply numArr · denArr where denArr was inverted in the previous command
for (let i = 0; i < zkey.domainSize; i++) {
const i_sFr = i * sFr;
const z = Fr.mul(numArr.slice(i_sFr, i_sFr + sFr), denArr.slice(i_sFr, i_sFr + sFr));
numArr.set(z, i_sFr);
}
// From now on the values saved on numArr will be Z(X) buffer
buffers.Z = numArr;
if (!Fr.eq(numArr.slice(0, sFr), Fr.one)) {
throw new Error("Copy constraints does not match");
}
// Compute polynomial coefficients z(X) from buffers.Z
if (logger) logger.info("··· Computing Z ifft");
polynomials.Z = await Polynomial.fromEvaluations(buffers.Z, curve, logger);
// Compute extended evaluations of z(X) polynomial
if (logger) logger.info("··· Computing Z fft");
evaluations.Z = await Evaluations.fromPolynomial(polynomials.Z, 4, curve, logger);
// Blind z(X) polynomial coefficients with blinding scalars b
polynomials.Z.blindCoefficients([challenges.b[9], challenges.b[8], challenges.b[7]]);
// Check degree
if (polynomials.Z.degree() >= zkey.domainSize + 3) {
throw new Error("Z Polynomial is not well calculated");
}
delete buffers.Z;
}
async function computeT1() {
if (logger) logger.info("··· Computing T1 evaluations");
buffers.T1 = new BigBuffer(sDomain * 2);
buffers.T1z = new BigBuffer(sDomain * 2);
// Set initial omega
let omega = Fr.one;
for (let i = 0; i < zkey.domainSize * 2; i++) {
if (logger && (0 !== i) && (i % 100000 === 0)) logger.info(` T1 evaluation ${i}/${zkey.domainSize * 4}`);
const omega2 = Fr.square(omega);
const z = evaluations.Z.getEvaluation(i * 2);
const zp = Fr.add(Fr.add(Fr.mul(challenges.b[7], omega2), Fr.mul(challenges.b[8], omega)), challenges.b[9]);
// T1(X) := (z(X) - 1) · L_1(X)
// Compute first T1(X)·Z_H(X), so divide later the resulting polynomial by Z_H(X)
const lagrange1 = evaluations.lagrange1.getEvaluation(zkey.domainSize + i * 2);
let t1 = Fr.mul(Fr.sub(z, Fr.one), lagrange1);
let t1z = Fr.mul(zp, lagrange1);
buffers.T1.set(t1, i * sFr);
buffers.T1z.set(t1z, i * sFr);
// Compute next omega
omega = Fr.mul(omega, Fr.w[zkey.power + 1]);
}
// Compute the coefficients of the polynomial T1(X) from buffers.T1
if (logger) logger.info("··· Computing T1 ifft");
polynomials.T1 = await Polynomial.fromEvaluations(buffers.T1, curve, logger);
// Divide the polynomial T1 by Z_H(X)
polynomials.T1.divByZerofier(zkey.domainSize, Fr.one);
// Compute the coefficients of the polynomial T1z(X) from buffers.T1z
if (logger) logger.info("··· Computing T1z ifft");
polynomials.T1z = await Polynomial.fromEvaluations(buffers.T1z, curve, logger);
// Add the polynomial T1z to T1 to get the final polynomial T1
polynomials.T1.add(polynomials.T1z);
// Check degree
if (polynomials.T1.degree() >= zkey.domainSize + 2) {
throw new Error("T1 Polynomial is not well calculated");
}
delete buffers.T1;
delete buffers.T1z;
delete polynomials.T1z;
}
async function computeT2() {
if (logger) logger.info("··· Computing T2 evaluations");
buffers.T2 = new BigBuffer(sDomain * 4);
buffers.T2z = new BigBuffer(sDomain * 4);
// Set initial omega
let omega = Fr.one;
for (let i = 0; i < zkey.domainSize * 4; i++) {
if (logger && (0 !== i) && (i % 100000 === 0)) logger.info(` T2 evaluation ${i}/${zkey.domainSize * 4}`);
const omega2 = Fr.square(omega);
const omegaW = Fr.mul(omega, Fr.w[zkey.power]);
const omegaW2 = Fr.square(omegaW);
const a = evaluations.A.getEvaluation(i);
const b = evaluations.B.getEvaluation(i);
const c = evaluations.C.getEvaluation(i);
const z = evaluations.Z.getEvaluation(i);
const zW = evaluations.Z.getEvaluation((zkey.domainSize * 4 + 4 + i) % (zkey.domainSize * 4));
const zp = Fr.add(Fr.add(Fr.mul(challenges.b[7], omega2), Fr.mul(challenges.b[8], omega)), challenges.b[9]);
const zWp = Fr.add(Fr.add(Fr.mul(challenges.b[7], omegaW2), Fr.mul(challenges.b[8], omegaW)), challenges.b[9]);
const sigma1 = evaluations.Sigma1.getEvaluation(i);
const sigma2 = evaluations.Sigma2.getEvaluation(i);
const sigma3 = evaluations.Sigma3.getEvaluation(i);
// T2(X) := [ (a(X) + beta·X + gamma)(b(X) + beta·k1·X + gamma)(c(X) + beta·k2·X + gamma)z(X)
// -(a(X) + beta·sigma1(X) + gamma)(b(X) + beta·sigma2(X) + gamma)(c(X) + beta·sigma3(X) + gamma)z(Xω)] · 1/Z_H(X)
// Compute first T2(X)·Z_H(X), so divide later the resulting polynomial by Z_H(X)
// expression 1 -> (a(X) + beta·X + gamma)(b(X) + beta·k1·X + gamma)(c(X) + beta·k2·X + gamma)z(X)
const betaX = Fr.mul(challenges.beta, omega);
let e11 = Fr.add(a, betaX);
e11 = Fr.add(e11, challenges.gamma);
let e12 = Fr.add(b, Fr.mul(betaX, zkey.k1));
e12 = Fr.add(e12, challenges.gamma);
let e13 = Fr.add(c, Fr.mul(betaX, zkey.k2));
e13 = Fr.add(e13, challenges.gamma);
let e1 = Fr.mul(Fr.mul(Fr.mul(e11, e12), e13), z);
let e1z = Fr.mul(Fr.mul(Fr.mul(e11, e12), e13), zp);
// const [e1, e1z] = MulZ.mul4(e11, e12, e13, z, ap, bp, cp, zp, i % 4, Fr);
// expression 2 -> (a(X) + beta·sigma1(X) + gamma)(b(X) + beta·sigma2(X) + gamma)(c(X) + beta·sigma3(X) + gamma)z(Xω)
let e21 = Fr.add(a, Fr.mul(challenges.beta, sigma1));
e21 = Fr.add(e21, challenges.gamma);
let e22 = Fr.add(b, Fr.mul(challenges.beta, sigma2));
e22 = Fr.add(e22, challenges.gamma);
let e23 = Fr.add(c, Fr.mul(challenges.beta, sigma3));
e23 = Fr.add(e23, challenges.gamma);
let e2 = Fr.mul(Fr.mul(Fr.mul(e21, e22), e23), zW);
let e2z = Fr.mul(Fr.mul(Fr.mul(e21, e22), e23), zWp);
// const [e2, e2z] = MulZ.mul4(e21, e22, e23, zW, ap, bp, cp, zWp, i % 4, Fr);
let t2 = Fr.sub(e1, e2);
let t2z = Fr.sub(e1z, e2z);
buffers.T2.set(t2, i * sFr);
buffers.T2z.set(t2z, i * sFr);
// Compute next omega
omega = Fr.mul(omega, Fr.w[zkey.power + 2]);
}
// Compute the coefficients of the polynomial T2(X) from buffers.T2
if (logger) logger.info("··· Computing T2 ifft");
polynomials.T2 = await Polynomial.fromEvaluations(buffers.T2, curve, logger);
// Divide the polynomial T2 by Z_H(X)
if (logger) logger.info("··· Computing T2 / ZH");
polynomials.T2.divByZerofier(zkey.domainSize, Fr.one);
// Compute the coefficients of the polynomial T2z(X) from buffers.T2z
if (logger) logger.info("··· Computing T2z ifft");
polynomials.T2z = await Polynomial.fromEvaluations(buffers.T2z, curve, logger);
// Add the polynomial T2z to T2 to get the final polynomial T2
polynomials.T2.add(polynomials.T2z);
// Check degree
if (polynomials.T2.degree() >= 3 * zkey.domainSize) {
throw new Error("T2 Polynomial is not well calculated");
}
delete buffers.T2;
delete buffers.T2z;
delete polynomials.T2z;
}
async function computeC2() {
let C2 = new CPolynomial(3, curve, logger);
C2.addPolynomial(0, polynomials.Z);
C2.addPolynomial(1, polynomials.T1);
C2.addPolynomial(2, polynomials.T2);
polynomials.C2 = C2.getPolynomial();
// Check degree
if (polynomials.C2.degree() >= 9 * zkey.domainSize) {
throw new Error("C2 Polynomial is not well calculated");
}
}
}
async function round3() {
if (logger) logger.info("> Computing challenge xi");
// STEP 3.1 - Compute evaluation challenge xi ∈ S
const transcript = new Keccak256Transcript(curve);
transcript.addScalar(challenges.gamma);
transcript.addPolCommitment(proof.getPolynomial("C2"));
// Obtain a xi_seeder from the transcript
// To force h1^4 = xi, h2^3 = xi and h_3^2 = xiω
// we compute xi = xi_seeder^12, h1 = xi_seeder^3, h2 = xi_seeder^4 and h3 = xi_seeder^6
challenges.xiSeed = transcript.getChallenge();
const xiSeed2 = Fr.square(challenges.xiSeed);
// Compute omega8, omega4 and omega3
roots.w8 = [];
roots.w8[0] = Fr.one;
for (let i = 1; i < 8; i++) {
roots.w8[i] = Fr.mul(roots.w8[i - 1], zkey.w8);
}
roots.w4 = [];
roots.w4[0] = Fr.one;
for (let i = 1; i < 4; i++) {
roots.w4[i] = Fr.mul(roots.w4[i - 1], zkey.w4);
}
roots.w3 = [];
roots.w3[0] = Fr.one;
roots.w3[1] = zkey.w3;
roots.w3[2] = Fr.square(zkey.w3);
// Compute h0 = xiSeeder^3
roots.S0 = {};
roots.S0.h0w8 = [];
roots.S0.h0w8[0] = Fr.mul(xiSeed2, challenges.xiSeed);
for (let i = 1; i < 8; i++) {
roots.S0.h0w8[i] = Fr.mul(roots.S0.h0w8[0], roots.w8[i]);
}
// Compute h1 = xi_seeder^6
roots.S1 = {};
roots.S1.h1w4 = [];
roots.S1.h1w4[0] = Fr.square(roots.S0.h0w8[0]);
for (let i = 1; i < 4; i++) {
roots.S1.h1w4[i] = Fr.mul(roots.S1.h1w4[0], roots.w4[i]);
}
// Compute h2 = xi_seeder^8
roots.S2 = {};
roots.S2.h2w3 = [];
roots.S2.h2w3[0] = Fr.mul(roots.S1.h1w4[0], xiSeed2);
roots.S2.h2w3[1] = Fr.mul(roots.S2.h2w3[0], roots.w3[1]);
roots.S2.h2w3[2] = Fr.mul(roots.S2.h2w3[0], roots.w3[2]);
roots.S2.h3w3 = [];
// Multiply h3 by third-root-omega to obtain h_3^3 = xiω
// So, h3 = xi_seeder^8 ω^{1/3}
roots.S2.h3w3[0] = Fr.mul(roots.S2.h2w3[0], zkey.wr);
roots.S2.h3w3[1] = Fr.mul(roots.S2.h3w3[0], roots.w3[1]);
roots.S2.h3w3[2] = Fr.mul(roots.S2.h3w3[0], roots.w3[2]);
// Compute xi = xi_seeder^24
challenges.xi = Fr.mul(Fr.square(roots.S2.h2w3[0]), roots.S2.h2w3[0]);
if (logger) logger.info("··· challenges.xi: " + Fr.toString(challenges.xi));
// Reserve memory for Q's polynomials
polynomials.QL = new Polynomial(new BigBuffer(sDomain), curve, logger);
polynomials.QR = new Polynomial(new BigBuffer(sDomain), curve, logger);
polynomials.QM = new Polynomial(new BigBuffer(sDomain), curve, logger);
polynomials.QO = new Polynomial(new BigBuffer(sDomain), curve, logger);
polynomials.QC = new Polynomial(new BigBuffer(sDomain), curve, logger);
// Read Q's evaluations from zkey file
await fdZKey.readToBuffer(polynomials.QL.coef, 0, sDomain, zkeySections[ZKEY_FF_QL_SECTION][0].p);
await fdZKey.readToBuffer(polynomials.QR.coef, 0, sDomain, zkeySections[ZKEY_FF_QR_SECTION][0].p);
await fdZKey.readToBuffer(polynomials.QM.coef, 0, sDomain, zkeySections[ZKEY_FF_QM_SECTION][0].p);
await fdZKey.readToBuffer(polynomials.QO.coef, 0, sDomain, zkeySections[ZKEY_FF_QO_SECTION][0].p);
await fdZKey.readToBuffer(polynomials.QC.coef, 0, sDomain, zkeySections[ZKEY_FF_QC_SECTION][0].p);
// STEP 3.2 - Compute opening evaluations and add them to the proof (third output of the prover)
if (logger) logger.info("··· Computing evaluations");
proof.addEvaluation("ql", polynomials.QL.evaluate(challenges.xi));
proof.addEvaluation("qr", polynomials.QR.evaluate(challenges.xi));
proof.addEvaluation("qm", polynomials.QM.evaluate(challenges.xi));
proof.addEvaluation("qo", polynomials.QO.evaluate(challenges.xi));
proof.addEvaluation("qc", polynomials.QC.evaluate(challenges.xi));
proof.addEvaluation("s1", polynomials.Sigma1.evaluate(challenges.xi));
proof.addEvaluation("s2", polynomials.Sigma2.evaluate(challenges.xi));
proof.addEvaluation("s3", polynomials.Sigma3.evaluate(challenges.xi));
proof.addEvaluation("a", polynomials.A.evaluate(challenges.xi));
proof.addEvaluation("b", polynomials.B.evaluate(challenges.xi));
proof.addEvaluation("c", polynomials.C.evaluate(challenges.xi));
proof.addEvaluation("z", polynomials.Z.evaluate(challenges.xi));
challenges.xiw = Fr.mul(challenges.xi, Fr.w[zkey.power]);
proof.addEvaluation("zw", polynomials.Z.evaluate(challenges.xiw));
proof.addEvaluation("t1w", polynomials.T1.evaluate(challenges.xiw));
proof.addEvaluation("t2w", polynomials.T2.evaluate(challenges.xiw));
}
async function round4() {
if (logger) logger.info("> Computing challenge alpha");
// STEP 4.1 - Compute challenge alpha ∈ F
const transcript = new Keccak256Transcript(curve);
transcript.addScalar(challenges.xiSeed);
transcript.addScalar(proof.getEvaluation("ql"));
transcript.addScalar(proof.getEvaluation("qr"));
transcript.addScalar(proof.getEvaluation("qm"));
transcript.addScalar(proof.getEvaluation("qo"));
transcript.addScalar(proof.getEvaluation("qc"));
transcript.addScalar(proof.getEvaluation("s1"));
transcript.addScalar(proof.getEvaluation("s2"));
transcript.addScalar(proof.getEvaluation("s3"));
transcript.addScalar(proof.getEvaluation("a"));
transcript.addScalar(proof.getEvaluation("b"));
transcript.addScalar(proof.getEvaluation("c"));
transcript.addScalar(proof.getEvaluation("z"));
transcript.addScalar(proof.getEvaluation("zw"));
transcript.addScalar(proof.getEvaluation("t1w"));
transcript.addScalar(proof.getEvaluation("t2w"));
challenges.alpha = transcript.getChallenge();
if (logger) logger.info("··· challenges.alpha: " + Fr.toString(challenges.alpha));
// STEP 4.2 - Compute F(X)
if (logger) logger.info("> Reading C0 polynomial");
polynomials.C0 = new Polynomial(new BigBuffer(sDomain * 8), curve, logger);
await fdZKey.readToBuffer(polynomials.C0.coef, 0, sDomain * 8, zkeySections[ZKEY_FF_C0_SECTION][0].p);
if (logger) logger.info("> Computing R0 polynomial");
computeR0();
if (logger) logger.info("> Computing R1 polynomial");
computeR1();
if (logger) logger.info("> Computing R2 polynomial");
computeR2();
if (logger) logger.info("> Computing F polynomial");
await computeF();
// The fourth output of the prover is ([W1]_1), where W1:=(f/Z_t)(x)
if (logger) logger.info("> Computing W1 multi exponentiation");
let commitW1 = await polynomials.F.multiExponentiation(PTau, "W1");
proof.addPolynomial("W1", commitW1);
return 0;
function computeR0() {
// COMPUTE R0
// Compute the coefficients of R0(X) from 8 evaluations using lagrange interpolation. R0(X) ∈ F_{<8}[X]
// We decide to use Lagrange interpolations because the R0 degree is very small (deg(R0)===7),
// and we were not able to compute it using current ifft implementation because the omega are different
polynomials.R0 = Polynomial.lagrangePolynomialInterpolation(
[roots.S0.h0w8[0], roots.S0.h0w8[1], roots.S0.h0w8[2], roots.S0.h0w8[3],
roots.S0.h0w8[4], roots.S0.h0w8[5], roots.S0.h0w8[6], roots.S0.h0w8[7]],
[polynomials.C0.evaluate(roots.S0.h0w8[0]), polynomials.C0.evaluate(roots.S0.h0w8[1]),
polynomials.C0.evaluate(roots.S0.h0w8[2]), polynomials.C0.evaluate(roots.S0.h0w8[3]),
polynomials.C0.evaluate(roots.S0.h0w8[4]), polynomials.C0.evaluate(roots.S0.h0w8[5]),
polynomials.C0.evaluate(roots.S0.h0w8[6]), polynomials.C0.evaluate(roots.S0.h0w8[7])], curve);
// Check the degree of r0(X) < 8
if (polynomials.R0.degree() > 7) {
throw new Error("R0 Polynomial is not well calculated");
}
}
function computeR1() {
// COMPUTE R1
// Compute the coefficients of R1(X) from 4 evaluations using lagrange interpolation. R1(X) ∈ F_{<4}[X]
// We decide to use Lagrange interpolations because the R1 degree is very small (deg(R1)===3),
// and we were not able to compute it using current ifft implementation because the omega are different