-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathlogit_amplification.py
72 lines (58 loc) · 2.28 KB
/
logit_amplification.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
import matplotlib.pyplot as plt
import numpy as np
import glob
import os
import pickle
from matplotlib.widgets import Slider
FOLDER = "logits-pile-alpaca"
def average_logits(folder):
accumulators = np.zeros((140,32000), dtype="float64")
num_files = 0
for i, name in enumerate(glob.glob(folder + "/*.pt")):
with open(name, 'rb') as file:
logits = pickle.load(file)
if i == 0:
accumulators[i] = logits[0].numpy()[0]
else:
accumulators[i] = accumulators[i - 1] + logits[0].numpy()[0]
return accumulators
ACCUMULATORS = average_logits(FOLDER)
def construct_lorenz(gamma, delta, to_average):
logits = ACCUMULATORS[int(to_average) - 1].copy()
logits /= to_average
len_greenlist = int(len(logits) * gamma)
greenlist = len_greenlist * [1] + (len(logits) - len_greenlist) * [0]
watermarks = np.array(greenlist)
rng = np.random.default_rng(0)
rng.shuffle(watermarks)
logits += watermarks * delta
return logits
def update(val):
gamma = gamma_slider.val
delta = delta_slider.val
to_average = averaging_slider.val
lorenz = construct_lorenz(gamma, delta, to_average)
lorenz = lorenz[~np.isinf(lorenz)]
ax.clear()
ax.hist(lorenz, bins=200, color='darkgreen', alpha=0.7)
ax.set_xlabel('Cumulative Probability')
ax.set_ylabel('Frequency')
fig.canvas.draw_idle()
if __name__ == "__main__":
lorenz = construct_lorenz(0.5, 10, 25)
fig, ax = plt.subplots(figsize=[6, 6])
plt.subplots_adjust(left=0.25, bottom=0.25)
ax.hist(lorenz, bins=200, color='darkgreen', alpha=0.7)
ax.set_xlabel('Cumulative Probability')
ax.set_ylabel('Frequency')
axcolor = 'lightgoldenrodyellow'
ax_gamma = plt.axes([0.25, 0.1, 0.65, 0.03], facecolor=axcolor)
ax_delta = plt.axes([0.25, 0.15, 0.65, 0.03], facecolor=axcolor)
ax_average = plt.axes([0.25, 0.05, 0.65, 0.03], facecolor=axcolor)
gamma_slider = Slider(ax_gamma, 'Gamma', 0, 1, valinit=0.5, valstep=0.01)
delta_slider = Slider(ax_delta, 'Delta', 0, 100, valinit=10, valstep=1)
averaging_slider = Slider(ax_average, 'Averaging', 1, 140, valinit=25, valstep=1)
gamma_slider.on_changed(update)
delta_slider.on_changed(update)
averaging_slider.on_changed(update)
plt.show()