-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMain.lean
119 lines (91 loc) · 3.04 KB
/
Main.lean
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
import HBind.HBind
import HBind.ElabHdo
open HBind(hBind)
set_option trace.Elab.do true
set_option pp.universes true
set_option trace.Meta.synthInstance false
def main: IO Unit :=
pure ()
--== Test utilities =========================================================--
def Dm1: Prop :=
True
deriving Inhabited
def D0: Type 0 :=
Nat
deriving Inhabited
def D1: Type 1 :=
(α: Type) → α → Nat
deriving Inhabited
def Dx: Type u :=
PUnit
deriving Inhabited
def getD0 [Monad m]: m D0 :=
pure default
def getD1 [Monad m]: m D1 :=
pure default
def getDx [Monad m]: m Dx :=
pure default
--== Tests with `Id` ========================================================--
example: Id Unit :=
hBind getD0 (fun _ => pure default)
-- The two monads in `hBind` are morally the same, but Lean won't guess that.
-- We need to indicate it by specifying the `m` parameter for the left action.
example: Id Unit :=
hBind getD0 (m := Id) fun _ =>
hBind getD1 (m := Id) fun _ =>
hBind getDx.{5} (m := Id) fun _ =>
pure default
-- The `hdo` notation automatically sets `(m := Id)` and `(n := Id)`, where
-- `Id` is an identifier with level parameters, inferred from the block's
-- expected type with universes generalized.
example: Id Unit := hdo
let _ ← getD0
let _ ← getD1
let _ ← getDx.{2}
getDx.{0}
-- Elaborating with `hdo` gives us a term based on `hBind`
def test_IO: IO Unit := hdo
IO.println "Lean4"
IO.println "hBind"
return ()
#print test_IO
--== Tests with a custom monad ==============================================--
-- We have to decouple the universes of the parameter `E: Type u → Type v` from
-- those of `R: Type w` since the latter is going to vary, but not the former
inductive ITree (E: Type u → Type v) (R: Type w): Type _ :=
| Ret (r: R)
| Vis {T: Type _} (e: E T) (k: T → ITree E R)
namespace ITree
def ITree.pure (r: R): ITree E R :=
Ret r
def ITree.bind (t: ITree E T) (k: T → ITree E R) :=
match t with
| Ret r => k r
| Vis e kt => Vis e (fun x => bind (kt x) k)
instance: Monad (ITree E) where
pure := ITree.pure
bind := ITree.bind
instance: HBind (ITree E) (ITree E) where
hBind {R₁: Type _} {R₂: Type _} (t: ITree E R₁) (k: R₁ → ITree E R₂):
ITree E R₂ := ITree.bind t k
inductive PVoid: Type u → Type v :=
inductive E00 {α: Type _} {β: Type}: Type → Type :=
| getNat: (n: Nat) → E00 Nat
inductive E01: Type → Type 1 :=
| call: {α β: Type} → (f: α → β) → (x: α) → E01 β
inductive E11: Type 1 → Type 1 :=
| mkConst: {R: Type} → (x: R) → E11 (ITree PVoid.{0,0} R)
| trigger: {E: Type → Type} → {T: Type} → (e: E T) → E11 (ITree E T)
inductive Euv: Type u → Type _ :=
| run: {E: Type u → Type v} → {R: Type u} → (t: ITree E R) → Euv R
example: ITree PVoid Nat :=
HBind.hBind (m := ITree PVoid) getD0 fun _ =>
HBind.hBind (m := ITree PVoid) getD1 fun _ =>
pure 0
example: ITree PVoid Nat := hdo
let _ ← getD0
let _ ← getDx.{4}
let _ ← getD1
pure 0
example: ITree PVoid (ITree PVoid Nat) := hdo
pure (.Ret 0)