forked from JuliaLang/julia
-
Notifications
You must be signed in to change notification settings - Fork 0
/
sorting.jl
258 lines (225 loc) · 8.14 KB
/
sorting.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
@test sort([2,3,1]) == [1,2,3]
@test sort([2,3,1], rev=true) == [3,2,1]
@test sort(['z':-1:'a']) == ['a':'z']
@test sort(['a':'z'], rev=true) == ['z':-1:'a']
@test sortperm([2,3,1]) == [3,1,2]
@test sortperm!([1,2,3], [2,3,1]) == [3,1,2]
@test !issorted([2,3,1])
@test issorted([1,2,3])
@test reverse([2,3,1]) == [1,3,2]
@test select([3,6,30,1,9],3) == 6
@test select([3,6,30,1,9],3:4) == [6,9]
let a=[1:10]
for r in Any[2:4, 1:2, 10:10, 4:2, 2:1, 4:-1:2, 2:-1:1, 10:-1:10, 4:1:3, 1:2:8, 10:-3:1]
@test select(a, r) == [r]
@test select(a, r, rev=true) == (11 .- [r])
end
end
@test sum(randperm(6)) == 21
@test nthperm([0,1,2],3) == [1,0,2]
@test searchsorted([1, 1, 2, 2, 3, 3], 0) == 1:0
@test searchsorted([1, 1, 2, 2, 3, 3], 1) == 1:2
@test searchsorted([1, 1, 2, 2, 3, 3], 2) == 3:4
@test searchsorted([1, 1, 2, 2, 3, 3], 4) == 7:6
@test searchsorted([1.0, 1, 2, 2, 3, 3], 2.5) == 5:4
@test searchsorted([1:10], 1, by=(x -> x >= 5)) == 1:4
@test searchsorted([1:10], 10, by=(x -> x >= 5)) == 5:10
@test searchsorted([1:5, 1:5, 1:5], 1, 6, 10, Base.Order.Forward) == 6:6
@test searchsorted(ones(15), 1, 6, 10, Base.Order.Forward) == 6:10
for (rg,I) in [(49:57,47:59), (1:2:17,-1:19), (-3:0.5:2,-5:.5:4)]
rg_r = reverse(rg)
rgv, rgv_r = [rg], [rg_r]
for i = I
@test searchsorted(rg,i) == searchsorted(rgv,i)
@test searchsorted(rg_r,i,rev=true) == searchsorted(rgv_r,i,rev=true)
end
end
rg = 0.0:0.01:1.0
for i = 2:101
@test searchsorted(rg, rg[i]) == i:i
@test searchsorted(rg, prevfloat(rg[i])) == i:i-1
@test searchsorted(rg, nextfloat(rg[i])) == i+1:i
end
rg_r = reverse(rg)
for i = 1:100
@test searchsorted(rg_r, rg_r[i], rev=true) == i:i
@test searchsorted(rg_r, prevfloat(rg_r[i]), rev=true) == i+1:i
@test searchsorted(rg_r, nextfloat(rg_r[i]), rev=true) == i:i-1
end
@test searchsorted(1:10, 1, by=(x -> x >= 5)) == searchsorted([1:10], 1, by=(x -> x >= 5))
@test searchsorted(1:10, 10, by=(x -> x >= 5)) == searchsorted([1:10], 10, by=(x -> x >= 5))
@test searchsorted([], 0) == 1:0
@test searchsorted([1,2,3], 0) == 1:0
@test searchsorted([1,2,3], 4) == 4:3
a = rand(1:10000, 1000)
for alg in [InsertionSort, MergeSort]
b = sort(a, alg=alg)
@test issorted(b)
ix = sortperm(a, alg=alg)
b = a[ix]
@test issorted(b)
@test a[ix] == b
sortperm!(ix, a, alg=alg)
b = a[ix]
@test issorted(b)
@test a[ix] == b
b = sort(a, alg=alg, rev=true)
@test issorted(b, rev=true)
ix = sortperm(a, alg=alg, rev=true)
b = a[ix]
@test issorted(b, rev=true)
@test a[ix] == b
sortperm!(ix, a, alg=alg, rev=true)
b = a[ix]
@test issorted(b, rev=true)
@test a[ix] == b
b = sort(a, alg=alg, by=x->1/x)
@test issorted(b, by=x->1/x)
ix = sortperm(a, alg=alg, by=x->1/x)
b = a[ix]
@test issorted(b, by=x->1/x)
@test a[ix] == b
sortperm!(ix, a, alg=alg, by=x->1/x)
@test issorted(b, by=x->1/x)
@test a[ix] == b
c = copy(a)
permute!(c, ix)
@test c == b
ipermute!(c, ix)
@test c == a
c = sort(a, alg=alg, lt=(>))
@test b == c
c = sort(a, alg=alg, by=x->1/x)
@test b == c
end
b = sort(a, alg=QuickSort)
@test issorted(b)
b = sort(a, alg=QuickSort, rev=true)
@test issorted(b, rev=true)
b = sort(a, alg=QuickSort, by=x->1/x)
@test issorted(b, by=x->1/x)
@test select([3,6,30,1,9], 2, rev=true) == 9
@test select([3,6,30,1,9], 2, by=x->1/x) == 9
## more advanced sorting tests ##
randnans(n) = reinterpret(Float64,[rand(UInt64)|0x7ff8000000000000 for i=1:n])
function randn_with_nans(n,p)
v = randn(n)
x = find(rand(n).<p)
v[x] = randnans(length(x))
return v
end
srand(0xdeadbeef)
for n in [0:10, 100, 101, 1000, 1001]
r = -5:5
v = rand(r,n)
h = hist(v,r)
for rev in [false,true]
# insertion sort (stable) as reference
pi = sortperm(v, alg=InsertionSort, rev=rev)
@test pi == sortperm(float(v), alg=InsertionSort, rev=rev)
@test isperm(pi)
si = v[pi]
@test hist(si,r) == h
@test issorted(si, rev=rev)
@test all(issorted,[pi[si.==x] for x in r])
c = copy(v)
permute!(c, pi)
@test c == si
ipermute!(c, pi)
@test c == v
# stable algorithms
for alg in [MergeSort]
p = sortperm(v, alg=alg, rev=rev)
@test p == sortperm(float(v), alg=alg, rev=rev)
@test p == pi
s = copy(v)
permute!(s, p)
@test s == si
ipermute!(s, p)
@test s == v
end
# unstable algorithms
for alg in [QuickSort]
p = sortperm(v, alg=alg, rev=rev)
@test p == sortperm(float(v), alg=alg, rev=rev)
@test isperm(p)
@test v[p] == si
s = copy(v)
permute!(s, p)
@test s == si
ipermute!(s, p)
@test s == v
end
end
v = randn_with_nans(n,0.1)
for alg in [InsertionSort, QuickSort, MergeSort],
rev in [false,true]
# test float sorting with NaNs
s = sort(v, alg=alg, rev=rev)
@test issorted(s, rev=rev)
@test reinterpret(UInt64,v[isnan(v)]) == reinterpret(UInt64,s[isnan(s)])
# test float permutation with NaNs
p = sortperm(v, alg=alg, rev=rev)
@test isperm(p)
vp = v[p]
@test isequal(vp,s)
@test reinterpret(UInt64,vp) == reinterpret(UInt64,s)
end
end
inds = [
1,1,1,2,2,2,3,3,3,4,4,4,5,5,5,6,6,6,7,7,7,8,8,8,9,9,9,10,
10,10,11,11,11,12,12,12,13,13,13,14,14,14,15,15,15,16,16,
16,17,17,17,18,18,18,19,19,19,20,20,20,21,21,22,22,22,23,
23,24,24,24,25,25,25,26,26,26,27,27,27,28,28,28,29,29,29,
30,30,30,31,31,32,32,32,33,33,33,34,34,34,35,35,35,36,36,
36,37,37,37,38,38,38,39,39,39,40,40,40,41,41,41,42,42,42,
43,43,43,44,44,44,45,45,45,46,46,46,47,47,47,48,48,48,49,
49,49,50,50,50,51,51,52,52,52,53,53,53,54,54,54,55,55,55,
56,56,56,57,57,57,58,58,58,59,60,60,60,61,61,61,62,62,63,
64,64,64,65,65,65,66,66,66,67,67,67,68,68,69,69,69,70,70,
70,71,71,71,72,72,72,73,73,73,74,75,75,75,76,76,76,77,77,
77,78,78,78,79,79,79,80,80,80,81,81,82,82,82,83,83,83,84,
84,84,85,85,85,86,86,86,87,87,87,88,88,88,89,89,89,90,90,
90,91,91,91,92,92,93,93,93,94,94,94,95,95,95,96,96,96,97,
97,98,98,98,99,99,99,100,100,100,101,101,101,102,102,102,
103,103,103,104,105,105,105,106,106,106,107,107,107,108,
108,108,109,109,109,110,110,110,111,111,111,112,112,112,
113,113,113,114,114,115,115,115,116,116,116,117,117,117,
118,118,118,119,119,119,120,120,120,121,121,121,122,122,
122,123,123,123,124,124,124,125,125,125,126,126,126,127,
127,127,128,128,128,129,129,129,130,130,130,131,131,131,
132,132,132,133,133,133,134,134,134,135,135,135,136,136,
136,137,137,137,138,138,138,139,139,139,140,140,140,141,
141,142,142,142,143,143,143,144,144,144,145,145,145,146,
146,146,147,147,147,148,148,148,149,149,149,150,150,150,
151,151,151,152,152,152,153,153,153,154,154,154,155,155,
155,156,156,156,157,157,157,158,158,158,159,159,159,160,
160,160,161,161,161,162,162,162,163,163,163,164,164,164,
165,165,165,166,166,166,167,167,167,168,168,168,169,169,
169,170,170,170,171,171,171,172,172,172,173,173,173,174,
174,174,175,175,175,176,176,176,177,177,177,178,178,178,
179,179,179,180,180,180,181,181,181,182,182,182,183,183,
183,184,184,184,185,185,185,186,186,186,187,187,187,188,
188,188,189,189,189,190,190,190,191,191,191,192,192,192,
193,193,193,194,194,194,195,195,195,196,196,197,197,197,
198,198,198,199,199,199,200,200,200
]
sp = sortperm(inds)
@test all(issorted, [sp[inds.==x] for x in 1:200])
for alg in [InsertionSort, MergeSort]
sp = sortperm(inds, alg=alg)
@test all(issorted, [sp[inds.==x] for x in 1:200])
end
# issue #6177
@test sortperm([ 0.0, 1.0, 1.0], rev=true) == [2, 3, 1]
@test sortperm([-0.0, 1.0, 1.0], rev=true) == [2, 3, 1]
@test sortperm([-1.0, 1.0, 1.0], rev=true) == [2, 3, 1]
# issue #8825 - stability of min/max
type Twain
a :: Int
b :: Int
end
Base.isless(x :: Twain, y :: Twain) = x.a < y.a
let x = Twain(2,3), y = Twain(2,4)
@test (min(x,y), max(x,y)) == (x,y) == minmax(x,y)
end