forked from kaldi-asr/kaldi
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtransform-common.h
73 lines (59 loc) · 2.8 KB
/
transform-common.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
// transform/transform-common.h
// Copyright 2009-2011 Saarland University; Georg Stemmer
// See ../../COPYING for clarification regarding multiple authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
// MERCHANTABLITY OR NON-INFRINGEMENT.
// See the Apache 2 License for the specific language governing permissions and
// limitations under the License.
#ifndef KALDI_TRANSFORM_TRANSFORM_COMMON_H_
#define KALDI_TRANSFORM_TRANSFORM_COMMON_H_
#include <vector>
#include "matrix/matrix-lib.h"
namespace kaldi {
class AffineXformStats {
public:
/// beta_ is the occupation count.
double beta_;
/// K_ is the summed outer product of [mean times inverse variance] with [extended data],
/// scaled by the occupation counts; dimension is dim by (dim+1)
Matrix<double> K_;
/// G_ is the outer product of extended-data, scaled by inverse variance, for each
/// dimension. These are the quadratic stats in fMLLR; in the diagonal-fMLLR
/// case G will be indexed 0 to dim_ - 1, but in the full-fMLLR case it will
/// be indexed 0 to ((dim)(dim+1))/2. Each G_[i] is of dimension dim+1 by dim+1.
std::vector< SpMatrix<double> > G_;
/// dim_ is the feature dimension.
int32 dim_;
AffineXformStats(): beta_(0.0), dim_(0.0) {}
void Init(int32 dim, int32 num_gs); // num_gs will equal dim for diagonal FMLLR.
int32 Dim() const { return dim_; }
void SetZero();
void CopyStats(const AffineXformStats &other);
void Add(const AffineXformStats &other);
void Write(std::ostream &out, bool binary) const;
void Read(std::istream &in, bool binary, bool add);
AffineXformStats(const AffineXformStats &other): beta_(other.beta_),
K_(other.K_),
G_(other.G_),
dim_(other.dim_) {}
// Note: allowing copy and assignment with their default
// values. All class members are OK with this.
};
bool ComposeTransforms(const Matrix<BaseFloat> &a, const Matrix<BaseFloat> &b,
bool b_is_affine,
Matrix<BaseFloat> *c);
/// Applies the affine transform 'xform' to the vector 'vec' and overwrites the
/// contents of 'vec'.
void ApplyAffineTransform(const MatrixBase<BaseFloat> &xform,
VectorBase<BaseFloat> *vec);
} // namespace kaldi
#endif // KALDI_TRANSFORM_TRANSFORM_COMMON_H_