-
Notifications
You must be signed in to change notification settings - Fork 27
/
Copy patha2q1.py
93 lines (77 loc) · 2.32 KB
/
a2q1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
import sys
import os
sys.path.append(os.getcwd()) # when using python-mode
import logreg # reload
import numpy as np
import scipy.optimize as scopt
import matplotlib as mpl
import matplotlib.pyplot as plt
import pdb
import math
dat = np.genfromtxt('data/ex2data1.txt', delimiter=',')
m = dat.shape[0]
nf = dat.shape[1]-1
# I couldn't believe this makes bgd go faster. To see why, don't do feature standardization, and run bgd. If the data has "large" numbers (ie. >> 1), alpha will be very sensitive.
x1 = dat[:,0]
ux1 = np.mean(x1)
sx1 = np.std(x1)
x1 = (x1 -ux1)/(sx1)
x2 = dat[:,1]
ux2 = np.mean(x2)
sx2 = np.std(x2)
x2 = (x2 -ux2)/(sx2)
y = dat[:,2]
X = np.matrix(zip([1]*m,x1,x2)) # always augment X with \vec{1} after feature standarization
th = np.zeros(3)
# skip gradient descent or fminunc
#newths = scopt.optimize.fmin(logreg.cost,th,args=(X,y,0))
lda = 0
epsilon = 0.0001
niter = 10000
alphas = (0.1,0.5,1,2)
pltnum = (221,222,223,224)
alpha_costs = {}
for alpha in alphas:
costs = []
newths = th
prev_cost = float("inf")
for i in range(niter):
new_cost = logreg.cost(newths,X,y,lda)
if prev_cost -new_cost <= epsilon:
break
costs.append(new_cost)
prev_cost = new_cost
newths = logreg.bgd(newths,X,y,alpha,lda)
costs = np.array(costs)
alpha_costs[alpha] = costs
numpts = 64
x_min, x_max = x1.min(), x1.max()
y_min, y_max = x2.min(), x2.max()
hx = (x_max -x_min)/numpts
hy = (y_max -y_min)/numpts
xx, yy = np.meshgrid(np.arange(x_min, x_max, hx),
np.arange(y_min, y_max, hy))
db = lambda x1: (-1./newths[2])*(newths[1]*x1 +newths[0])
dbxs = np.arange(x_min, x_max, hx)
dbys = map(db, dbxs)
## visualize data and boundary
plt.scatter(x1,x2,c=map(int,y),cmap=mpl.cm.get_cmap("Greens"))
plt.plot(dbxs,dbys,ls='-')
# plt.show()
# find largest x and y range
max_x = float("-inf")
min_y = float("inf")
max_y = float("-inf")
for alpha in alphas:
max_x = max(max_x,len(alpha_costs[alpha]))
max_y = max(max_y,max(alpha_costs[alpha]))
min_y = min(min_y,min(alpha_costs[alpha]))
# plt.clf(); plt.plot(costs); plt.show()
for i,alpha in enumerate(alphas):
plt.subplot(pltnum[i])
plt.title("alpha = " +str(alpha))
plt.xlabel("niter")
plt.ylabel("cost")
plt.plot(alpha_costs[alpha])
# plt.ylim(min_y, max_y)
plt.xlim(0, max_x)