forked from awslabs/aws-c-common
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtask_scheduler.c
191 lines (156 loc) · 7.32 KB
/
task_scheduler.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
/*
* Copyright 2010-2018 Amazon.com, Inc. or its affiliates. All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License").
* You may not use this file except in compliance with the License.
* A copy of the License is located at
*
* http://aws.amazon.com/apache2.0
*
* or in the "license" file accompanying this file. This file is distributed
* on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
* express or implied. See the License for the specific language governing
* permissions and limitations under the License.
*/
#include <aws/common/task_scheduler.h>
#include <assert.h>
static const size_t DEFAULT_QUEUE_SIZE = 7;
static int s_compare_timestamps(const void *a, const void *b) {
uint64_t a_time = (*(struct aws_task **)a)->timestamp;
uint64_t b_time = (*(struct aws_task **)b)->timestamp;
return a_time > b_time; /* min-heap */
}
static void s_run_all(struct aws_task_scheduler *scheduler, uint64_t current_time, enum aws_task_status status);
int aws_task_scheduler_init(struct aws_task_scheduler *scheduler, struct aws_allocator *alloc) {
assert(alloc);
scheduler->alloc = alloc;
aws_linked_list_init(&scheduler->timed_list);
aws_linked_list_init(&scheduler->asap_list);
return aws_priority_queue_init_dynamic(
&scheduler->timed_queue, alloc, DEFAULT_QUEUE_SIZE, sizeof(struct aws_task *), &s_compare_timestamps);
}
void aws_task_scheduler_clean_up(struct aws_task_scheduler *scheduler) {
assert(scheduler);
/* Execute all remaining tasks as CANCELED.
* Do this in a loop so that tasks scheduled by other tasks are executed */
while (aws_task_scheduler_has_tasks(scheduler, NULL)) {
s_run_all(scheduler, UINT64_MAX, AWS_TASK_STATUS_CANCELED);
}
aws_priority_queue_clean_up(&scheduler->timed_queue);
AWS_ZERO_STRUCT(scheduler);
}
bool aws_task_scheduler_has_tasks(const struct aws_task_scheduler *scheduler, uint64_t *next_task_time) {
assert(scheduler);
uint64_t timestamp = UINT64_MAX;
bool has_tasks = false;
if (!aws_linked_list_empty(&scheduler->asap_list)) {
timestamp = 0;
has_tasks = true;
} else {
/* Check whether timed_list or timed_queue has the earlier task */
if (AWS_UNLIKELY(!aws_linked_list_empty(&scheduler->timed_list))) {
struct aws_linked_list_node *node = aws_linked_list_front(&scheduler->timed_list);
struct aws_task *task = AWS_CONTAINER_OF(node, struct aws_task, node);
timestamp = task->timestamp;
has_tasks = true;
}
struct aws_task **task_ptrptr = NULL;
if (aws_priority_queue_top(&scheduler->timed_queue, (void **)&task_ptrptr) == AWS_OP_SUCCESS) {
if ((*task_ptrptr)->timestamp < timestamp) {
timestamp = (*task_ptrptr)->timestamp;
}
has_tasks = true;
}
}
if (next_task_time) {
*next_task_time = timestamp;
}
return has_tasks;
}
void aws_task_scheduler_schedule_now(struct aws_task_scheduler *scheduler, struct aws_task *task) {
assert(scheduler);
assert(task);
assert(task->fn);
task->timestamp = 0;
aws_linked_list_push_back(&scheduler->asap_list, &task->node);
}
void aws_task_scheduler_schedule_future(
struct aws_task_scheduler *scheduler,
struct aws_task *task,
uint64_t time_to_run) {
assert(scheduler);
assert(task);
assert(task->fn);
task->timestamp = time_to_run;
int err = aws_priority_queue_push(&scheduler->timed_queue, &task);
if (AWS_UNLIKELY(err)) {
/* In the (very unlikely) case that we can't push into the timed_queue,
* perform a sorted insertion into timed_list. */
struct aws_linked_list_node *node_i;
for (node_i = aws_linked_list_begin(&scheduler->timed_list);
node_i != aws_linked_list_end(&scheduler->timed_list);
node_i = aws_linked_list_next(node_i)) {
struct aws_task *task_i = AWS_CONTAINER_OF(node_i, struct aws_task, node);
if (task_i->timestamp > time_to_run) {
break;
}
}
aws_linked_list_insert_before(node_i, &task->node);
}
}
void aws_task_scheduler_run_all(struct aws_task_scheduler *scheduler, uint64_t current_time) {
assert(scheduler);
s_run_all(scheduler, current_time, AWS_TASK_STATUS_RUN_READY);
}
static void s_run_all(struct aws_task_scheduler *scheduler, uint64_t current_time, enum aws_task_status status) {
/* Move scheduled tasks to running_list before executing.
* This gives us the desired behavior that: if executing a task results in another task being scheduled,
* that new task is not executed until the next time run() is invoked. */
struct aws_linked_list running_list;
aws_linked_list_init(&running_list);
/* First move everything from asap_list */
aws_linked_list_swap_contents(&running_list, &scheduler->asap_list);
/* Next move tasks from timed_queue and timed_list, based on whichever's next-task is sooner.
* It's very unlikely that any tasks are in timed_list, so once it has no more valid tasks,
* break out of this complex loop in favor of a simpler one. */
while (AWS_UNLIKELY(!aws_linked_list_empty(&scheduler->timed_list))) {
struct aws_linked_list_node *timed_list_node = aws_linked_list_begin(&scheduler->timed_list);
struct aws_task *timed_list_task = AWS_CONTAINER_OF(timed_list_node, struct aws_task, node);
if (timed_list_task->timestamp > current_time) {
/* timed_list is out of valid tasks, break out of complex loop */
break;
}
/* Check if timed_queue has a task which is sooner */
struct aws_task **timed_queue_task_ptrptr = NULL;
if (aws_priority_queue_top(&scheduler->timed_queue, (void **)&timed_queue_task_ptrptr) == AWS_OP_SUCCESS) {
if ((*timed_queue_task_ptrptr)->timestamp <= current_time) {
if ((*timed_queue_task_ptrptr)->timestamp < timed_list_task->timestamp) {
/* Take task from timed_queue */
struct aws_task *timed_queue_task;
aws_priority_queue_pop(&scheduler->timed_queue, &timed_queue_task);
aws_linked_list_push_back(&running_list, &timed_queue_task->node);
continue;
}
}
}
/* Take task from timed_list */
aws_linked_list_pop_front(&scheduler->timed_list);
aws_linked_list_push_back(&running_list, &timed_list_task->node);
}
/* Simpler loop that moves remaining valid tasks from timed_queue */
struct aws_task **timed_queue_task_ptrptr = NULL;
while (aws_priority_queue_top(&scheduler->timed_queue, (void **)&timed_queue_task_ptrptr) == AWS_OP_SUCCESS) {
if ((*timed_queue_task_ptrptr)->timestamp > current_time) {
break;
}
struct aws_task *next_timed_task;
aws_priority_queue_pop(&scheduler->timed_queue, &next_timed_task);
aws_linked_list_push_back(&running_list, &next_timed_task->node);
}
/* Run tasks */
while (!aws_linked_list_empty(&running_list)) {
struct aws_linked_list_node *task_node = aws_linked_list_pop_front(&running_list);
struct aws_task *task = AWS_CONTAINER_OF(task_node, struct aws_task, node);
task->fn(task, task->arg, status);
}
}