forked from rushter/MLAlgorithms
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgbm.py
49 lines (37 loc) · 1.72 KB
/
gbm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
import logging
from sklearn.datasets import make_classification
from sklearn.datasets import make_regression
from sklearn.metrics import roc_auc_score
try:
from sklearn.model_selection import train_test_split
except ImportError:
from sklearn.cross_validation import train_test_split
from mla.ensemble.gbm import GradientBoostingClassifier, GradientBoostingRegressor
from mla.metrics.metrics import mean_squared_error
logging.basicConfig(level=logging.DEBUG)
def classification():
# Generate a random binary classification problem.
X, y = make_classification(
n_samples=350, n_features=15, n_informative=10, random_state=1111, n_classes=2, class_sep=1.0, n_redundant=0
)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.15, random_state=1111)
model = GradientBoostingClassifier(n_estimators=50, max_depth=4, max_features=8, learning_rate=0.1)
model.fit(X_train, y_train)
predictions = model.predict(X_test)
print(predictions)
print(predictions.min())
print(predictions.max())
print("classification, roc auc score: %s" % roc_auc_score(y_test, predictions))
def regression():
# Generate a random regression problem
X, y = make_regression(
n_samples=500, n_features=5, n_informative=5, n_targets=1, noise=0.05, random_state=1111, bias=0.5
)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1, random_state=1111)
model = GradientBoostingRegressor(n_estimators=25, max_depth=5, max_features=3)
model.fit(X_train, y_train)
predictions = model.predict(X_test)
print("regression, mse: %s" % mean_squared_error(y_test.flatten(), predictions.flatten()))
if __name__ == "__main__":
classification()
# regression()