Skip to content

Latest commit

 

History

History
203 lines (158 loc) · 8.03 KB

README.md

File metadata and controls

203 lines (158 loc) · 8.03 KB

MIC for Domain-Adaptive Semantic Segmentation

Environment Setup

First, please install cuda version 11.0.3 available at https://developer.nvidia.com/cuda-11-0-3-download-archive. It is required to build mmcv-full later.

For this project, we used python 3.8.5. We recommend setting up a new virtual environment:

python -m venv ~/venv/mic-seg
source ~/venv/mic-seg/bin/activate

In that environment, the requirements can be installed with:

pip install -r requirements.txt -f https://download.pytorch.org/whl/torch_stable.html
pip install mmcv-full==1.3.7  # requires the other packages to be installed first

Please, download the MiT-B5 ImageNet weights provided by SegFormer from their OneDrive and put them in the folder pretrained/.

Dataset Setup

Cityscapes: Please, download leftImg8bit_trainvaltest.zip and gt_trainvaltest.zip from here and extract them to data/cityscapes.

GTA: Please, download all image and label packages from here and extract them to data/gta.

Synthia (Optional): Please, download SYNTHIA-RAND-CITYSCAPES from here and extract it to data/synthia.

ACDC (Optional): Please, download rgb_anon_trainvaltest.zip and gt_trainval.zip from here and extract them to data/acdc. Further, please restructure the folders from condition/split/sequence/ to split/ using the following commands:

rsync -a data/acdc/rgb_anon/*/train/*/* data/acdc/rgb_anon/train/
rsync -a data/acdc/rgb_anon/*/val/*/* data/acdc/rgb_anon/val/
rsync -a data/acdc/gt/*/train/*/*_labelTrainIds.png data/acdc/gt/train/
rsync -a data/acdc/gt/*/val/*/*_labelTrainIds.png data/acdc/gt/val/

Dark Zurich (Optional): Please, download the Dark_Zurich_train_anon.zip and Dark_Zurich_val_anon.zip from here and extract it to data/dark_zurich.

The final folder structure should look like this:

DAFormer
├── ...
├── data
│   ├── acdc (optional)
│   │   ├── gt
│   │   │   ├── train
│   │   │   ├── val
│   │   ├── rgb_anon
│   │   │   ├── train
│   │   │   ├── val
│   ├── cityscapes
│   │   ├── leftImg8bit
│   │   │   ├── train
│   │   │   ├── val
│   │   ├── gtFine
│   │   │   ├── train
│   │   │   ├── val
│   ├── dark_zurich (optional)
│   │   ├── gt
│   │   │   ├── val
│   │   ├── rgb_anon
│   │   │   ├── train
│   │   │   ├── val
│   ├── gta
│   │   ├── images
│   │   ├── labels
│   ├── synthia (optional)
│   │   ├── RGB
│   │   ├── GT
│   │   │   ├── LABELS
├── ...

Data Preprocessing: Finally, please run the following scripts to convert the label IDs to the train IDs and to generate the class index for RCS:

python tools/convert_datasets/gta.py data/gta --nproc 8
python tools/convert_datasets/cityscapes.py data/cityscapes --nproc 8
python tools/convert_datasets/synthia.py data/synthia/ --nproc 8

Training

For convenience, we provide an annotated config file of the final MIC(HRDA) on GTA→Cityscapes. A training job can be launched using:

python run_experiments.py --config configs/mic/gtaHR2csHR_mic_hrda.py

The logs and checkpoints are stored in work_dirs/.

For the other experiments in our paper, we use a script to automatically generate and train the configs:

python run_experiments.py --exp <ID>

More information about the available experiments and their assigned IDs, can be found in experiments.py. The generated configs will be stored in configs/generated/.

Evaluation

A trained model can be evaluated using:

sh test.sh work_dirs/run_name/

The predictions are saved for inspection to work_dirs/run_name/preds and the mIoU of the model is printed to the console.

When training a model on Synthia→Cityscapes, please note that the evaluation script calculates the mIoU for all 19 Cityscapes classes. However, Synthia contains only labels for 16 of these classes. Therefore, it is a common practice in UDA to report the mIoU for Synthia→Cityscapes only on these 16 classes. As the Iou for the 3 missing classes is 0, you can do the conversion mIoU16 = mIoU19 * 19 / 16.

The results for Cityscapes→ACDC and Cityscapes→DarkZurich are reported on the test split of the target dataset. To generate the predictions for the test set, please run:

python -m tools.test path/to/config_file path/to/checkpoint_file --test-set --format-only --eval-option imgfile_prefix=labelTrainIds to_label_id=False

The predictions can be submitted to the public evaluation server of the respective dataset to obtain the test score.

Checkpoints

Below, we provide checkpoints of MIC(HRDA) for the different benchmarks. As the results in the paper are provided as the mean over three random seeds, we provide the checkpoint with the median validation performance here.

The checkpoints come with the training logs. Please note that:

  • The logs provide the mIoU for 19 classes. For Synthia→Cityscapes, it is necessary to convert the mIoU to the 16 valid classes. Please, read the section above for converting the mIoU.
  • The logs provide the mIoU on the validation set. For Cityscapes→ACDC and Cityscapes→DarkZurich the results reported in the paper are calculated on the test split. For DarkZurich, the performance significantly differs between validation and test split. Please, read the section above on how to obtain the test mIoU.

Framework Structure

This project is based on mmsegmentation version 0.16.0. For more information about the framework structure and the config system, please refer to the mmsegmentation documentation and the mmcv documentation.

The most relevant files for MIC are:

Acknowledgements

MIC is based on the following open-source projects. We thank their authors for making the source code publicly available.