forked from lmb-freiburg/FLN-EPN-RPN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnet.py
179 lines (157 loc) · 8.04 KB
/
net.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
import os
import math
import argparse
import tensorflow as tf
from resnet import ResNetArchitecture
from utils_tf import *
class RPN():
def __init__(self, static, object): # pass the last observed static semantic segmentation and the object of interest
# self.static = tf_resample_semantic(static, width=448, height=256)
# self.static = tf_resample(self.static, width=448, height=320)
self.static = static
self.object = object # (1, 1, 6, 1)
def disassembling(self, data): # input has shape (1, 80, 1, 1)
hyps = tf.split(data, [4 for i in range(20)], 1) # set of (1, 4, 1, 1)
return hyps
def prepare_input(self):
target_id = self.object[0, 0, 5, 0] # (55 for car, 19 for pedestrian)
target_blob = tf.fill((1, 1, self.static.shape[2], self.static.shape[3]), target_id)
input = tf.concat([self.static, target_blob], axis=1)
return input
def make_graph(self):
arch = ResNetArchitecture(num_classes=4*20, avg_pool=False, batch_norm_flag=False,
resnet_version=1, reuse=False)
input = self.prepare_input()
output = arch.make_graph(input, training=False)
out_hyps = self.disassembling(output)
return out_hyps
class RTN():
def __init__(self, static, object, img, egos, rpn_hyps):
#self.static = tf_resample_semantic(static, width=448, height=256)
self.static = static
self.object = object # (1, 1, 6, 1)
#self.img = tf_resample_img(img, width=448, height=256)
self.img = img
self.egos = egos # (2,1,1,7,1) for 2 egos (first is for the last observed image and second is for the future image)
self.rpn_hyps = rpn_hyps
def disassembling(self, data): # input has shape (1, 80, 1, 1)
hyps = tf.split(data, [4 for i in range(20)], 1) # set of (1, 4, 1, 1)
return hyps
def prepare_input(self):
[n, c, h, w] = self.img.get_shape().as_list()
input_list = []
input_list.append(self.img)
input_list.append(self.static)
multiply = tf.constant([1, 1, h, w])
for hyp in self.rpn_hyps: # n,4,1,1
tiled = tf.tile(hyp, multiply)
input_list.append(tf.stop_gradient(tiled))
input = tf.concat(input_list, axis=1)
return input
def make_graph(self):
with tf.variable_scope("transfer"):
arch = ResNetArchitecture(num_classes=4*20, avg_pool=False, batch_norm_flag=False,
resnet_version=1, reuse=False, shallow_reduction=True)
input = self.prepare_input()
relative_pose = (self.egos[1] - self.egos[0])[:, 0, :, 0] # 1,1,7,1 >> 1,7
pose_feat = tf.layers.dense(inputs=relative_pose, units=512, activation=tf.nn.relu)
output = arch.make_graph(input, training=False, additional_features=pose_feat)
out_hyps = self.disassembling(output)
for i in range(len(self.rpn_hyps)):
out_hyps[i] = self.rpn_hyps[i] + out_hyps[i]
return out_hyps
class FLN():
def __init__(self, imgs, semantics, egos, objects, rtn_hyps):
self.imgs = imgs
self.semantics = semantics
self.egos = egos
self.objects = objects
self.rtn_hyps = rtn_hyps
def disassembling(self, data): # input has shape (1, 80, 1, 1)
hyps = tf.split(data, [4 for i in range(20)], 1) # set of (1, 4, 1, 1)
return hyps
def prepare_input(self):
[n, c, h, w] = self.imgs[0].get_shape().as_list()
input_list = []
all_masks = tf.zeros((n, 1, h, w))
for i in range(0, 3):
object = self.objects[i]
mask = tf_get_mask(object[0, 0, :, 0], w, h, fill_value=object[0, 0, 5, 0])
all_masks = all_masks + mask
input_list.append(self.imgs[i])
input_list.append(self.semantics[i])
input_list.append(mask)
if len(self.rtn_hyps) > 0:
imposed_image = tf_impose_hyps(self.rtn_hyps, w, h)
input_list.append(imposed_image)
multiply = tf.constant([1, 1, h, w])
for hyp in self.rtn_hyps: # n,4,1,1
tiled = tf.tile(hyp, multiply)
input_list.append(tiled)
input = tf.concat(input_list, axis=1)
return input
def make_graph(self):
with tf.variable_scope("prediction"):
arch = ResNetArchitecture(num_classes=4 * 20, avg_pool=False, batch_norm_flag=False,
resnet_version=1, reuse=False, shallow_reduction=True)
input = self.prepare_input()
relative_pose = (self.egos[1] - self.egos[0])[:, 0, :, 0] # 1,1,7,1 >> 1,7
pose_feat = tf.layers.dense(inputs=relative_pose, units=512, activation=tf.nn.relu)
output = arch.make_graph(input, training=False, additional_features=pose_feat)
out_hyps = self.disassembling(output)
# fitting
with tf.variable_scope("fitting"):
intermediate = tf.tanh(tf_full_conn(output, name='predict_fc0', num_output=500))
intermediate_drop = intermediate
predicted = tf_full_conn(intermediate_drop, name='predict_fc1', num_output=20 * 4)
out_soft_assignments = self.disassembling(predicted)
means, bounded_log_sigmas, mixture_weights = tf_assemble_gmm_parameters_samples(samples_means=out_hyps, assignments=out_soft_assignments)
sigmas = [tf.exp(x) for x in bounded_log_sigmas]
return means, sigmas, mixture_weights, out_hyps, self.rtn_hyps
class EPN():
def __init__(self, img, semantic, egos, object, rtn_hyps):
self.img = img
self.semantic = semantic
self.egos = egos
self.object = object
self.rtn_hyps = rtn_hyps
def disassembling(self, data): # input has shape (1, 80, 1, 1)
hyps = tf.split(data, [4 for i in range(20)], 1) # set of (1, 4, 1, 1)
return hyps
def disassembling_assignments(self, data): # input has shape (1, 80, 1, 1)
hyps = tf.split(data, [8 for i in range(20)], 1) # set of (1, 4, 1, 1)
return hyps
def prepare_input(self):
[n, c, h, w] = self.img.get_shape().as_list()
input_list = [self.img]
target_id = self.object[0, 0, 5, 0] # (55 for car, 19 for pedestrian)
target_blob = tf.fill((1, 1, self.img.shape[2], self.img.shape[3]), target_id)
input_list.append(target_blob)
input_list.append(self.semantic)
if len(self.rtn_hyps) > 0:
imposed_image = tf_impose_hyps(self.rtn_hyps, w, h)
input_list.append(imposed_image)
multiply = tf.constant([1, 1, h, w])
for hyp in self.rtn_hyps: # n,4,1,1
tiled = tf.tile(hyp, multiply)
input_list.append(tiled)
input = tf.concat(input_list, axis=1)
return input
def make_graph(self):
with tf.variable_scope("anticipation"):
arch = ResNetArchitecture(num_classes=4 * 20, avg_pool=False, batch_norm_flag=False,
resnet_version=1, reuse=False, shallow_reduction=True)
input = self.prepare_input()
relative_pose = (self.egos[1] - self.egos[0])[:, 0, :, 0] # 1,1,7,1 >> 1,7
pose_feat = tf.layers.dense(inputs=relative_pose, units=512, activation=tf.nn.relu)
output = arch.make_graph(input, training=False, additional_features=pose_feat)
out_hyps = self.disassembling(output)
# fitting
with tf.variable_scope("fitting"):
intermediate = tf.tanh(tf_full_conn(output, name='predict_fc0', num_output=500))
intermediate_drop = intermediate
predicted = tf_full_conn(intermediate_drop, name='predict_fc1', num_output=20 * 8)
out_soft_assignments = self.disassembling_assignments(predicted)
means, bounded_log_sigmas, mixture_weights = tf_assemble_gmm_parameters_samples(samples_means=out_hyps, assignments=out_soft_assignments)
sigmas = [tf.exp(x) for x in bounded_log_sigmas]
return means, sigmas, mixture_weights, out_hyps, self.rtn_hyps