Skip to content

lichen-lab/DeepPerVar

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

19 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

DeepPerVar

By leveraging paired whole genome sequencing data and epigenetic functional assays in a population cohort, a DeepPerVar is a multi-modal deep learning framework to predict genome-wide quantitative epigenetic signals and evaluate the functional consequence of noncoding variants on an individual level by quantifying their allelic difference on the prediction. By applying DeepPerVar to the ROSMAP cohort studying Alzheimer’s disease (AD), the web server can accurately predict genome-wide H3K9ac signals and DNA methylation ratio given DNA genomic sequence under reference and alternative alleles, and use the allelic difference as the score to evaluate the functional consequence of genetic variants associated with Alzheimer’s disease in a personal genome.

DeepPerVar

We implement a webserver to predict genome-wide H3K9ac signals and DNA methylation ratio and the mutation effect on these two epigenetics signals. The webserver can be accessed from link.

Requirements and Installation

DeepPerVar is implemented by Python3.

  • Python 3.8
  • samtools 1.15.1
  • hdf5 == 1.10.4
  • numpy >= 1.18.5
  • pytorch ==1.7.1
  • biopython=1.19.2

Download Reference Genome (hg19) DeepPerVar Models

unzip Models.zip Genomes.zip

Download DeepPerVar:

git clone https://github.com/alfredyewang/DeepPerVar

Install requirements, samtools can be downloaded and installed from link.

pip3 install -r requirements --user

Usage

You can see the input arguments for DeepPerVar by help option:

usage: DeepPerVar.py [-h] [--prediction] [--epigenomics EPIGENOMICS] [--bed BED] [--model_dir <data_directory>] [--res_dir <data_directory>]

DeepPerVar: a multimodal deep learning framework for functional interpretation of genetic variants in personal genome

optional arguments:
  -h, --help            show this help message and exit
  --prediction          Use this option for predict DeepPerVar score
  --epigenomics EPIGENOMICS
                        Epigenetics, can be H3K9 or DNA_methylation
  --bed BED             The Bed file for predicts epigenetics and mutation effects
  --model_dir <data_directory>
                        The model directory for DeepPerVar
  --res_dir <data_directory>
                        The data directory for save results

Input File Format

WEVar takes UCSC Genome Browser BED file. The BED fields are:

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%