|
| 1 | +use std::num; |
| 2 | + |
| 3 | +/** |
| 4 | + * [004] median of two sorted arrays |
| 5 | + * |
| 6 | + * 给定两个大小分别为 m 和 n 的正序(从小到大)数组 nums1 和 nums2。请你找出并返回这两个正序数组的 中位数 。 |
| 7 | + * |
| 8 | + * 算法的时间复杂度应该为 O(log (m+n)) 。 |
| 9 | + * |
| 10 | + * |
| 11 | + * 示例 1: |
| 12 | + * |
| 13 | + * 输入:nums1 = [1,3], nums2 = [2] |
| 14 | + * 输出:2.00000 |
| 15 | + * 解释:合并数组 = [1,2,3] ,中位数 2 |
| 16 | + * 示例 2: |
| 17 | + * |
| 18 | + * 输入:nums1 = [1,2], nums2 = [3,4] |
| 19 | + * 输出:2.50000 |
| 20 | + * 解释:合并数组 = [1,2,3,4] ,中位数 (2 + 3) / 2 = 2.5 |
| 21 | + * |
| 22 | + * 提示: |
| 23 | + * |
| 24 | + * nums1.length == m |
| 25 | + * nums2.length == n |
| 26 | + * 0 <= m <= 1000 |
| 27 | + * 0 <= n <= 1000 |
| 28 | + * 1 <= m + n <= 2000 |
| 29 | + * -106 <= nums1[i], nums2[i] <= 106 |
| 30 | + */ |
| 31 | +use std::cmp; |
| 32 | + |
| 33 | +struct Solution; |
| 34 | + |
| 35 | +/** |
| 36 | + * 思路: |
| 37 | + * 1. 归并排序,取中位数,时间复杂度 O(m+n),空间复杂度 O(m+n) |
| 38 | + * 2. 找到两个数组的中位数的位置,时间复杂度 O(m+n),空间复杂度 O(1) |
| 39 | + * 3. 二分法找到两个数组的中位数的位置,时间复杂度 O(log(m+n)),空间复杂度 O(1) |
| 40 | + * 4. 中位数的统计学意义,将两个数组拆分,时间复杂度 O(log(min(m+n))),空间复杂度 O(1) |
| 41 | + */ |
| 42 | +impl Solution { |
| 43 | + pub fn find_median_sorted_arrays(nums1: Vec<i32>, nums2: Vec<i32>) -> f64 { |
| 44 | + let length_1 = nums1.len(); |
| 45 | + let length_2 = nums2.len(); |
| 46 | + let total_length = length_1 + length_2; |
| 47 | + if (total_length % 2 == 1) { |
| 48 | + let medium = total_length / 2; |
| 49 | + Solution::find_median_sorted_arrays_by_binary_search(&nums1, &nums2, medium + 1) as f64 |
| 50 | + } else { |
| 51 | + let medium = total_length / 2; |
| 52 | + let left = medium - 1; |
| 53 | + let right = medium; |
| 54 | + ((Solution::find_median_sorted_arrays_by_binary_search(&nums1, &nums2, left + 1) |
| 55 | + + Solution::find_median_sorted_arrays_by_binary_search(&nums1, &nums2, right + 1)) |
| 56 | + as f64) |
| 57 | + / 2.0 |
| 58 | + } |
| 59 | + } |
| 60 | + |
| 61 | + fn find_median_sorted_arrays_by_binary_search(nums1: &[i32], nums2: &[i32], k: usize) -> i32 { |
| 62 | + let length1 = nums1.len(); |
| 63 | + let length2 = nums2.len(); |
| 64 | + let mut index1 = 0; |
| 65 | + let mut index2 = 0; |
| 66 | + let mut k = k; |
| 67 | + let mut new_index1 = 0; |
| 68 | + let mut new_index2 = 0; |
| 69 | + loop { |
| 70 | + println!( |
| 71 | + "index1:{} index2:{} newIndex1:{} newIndex2:{}, k:{}", |
| 72 | + index1, index2, new_index1, new_index2, k |
| 73 | + ); |
| 74 | + if (index1 == nums1.len()) { |
| 75 | + return nums2[index2 + k - 1]; |
| 76 | + } |
| 77 | + if (index2 == nums2.len()) { |
| 78 | + return nums1[index1 + k - 1]; |
| 79 | + } |
| 80 | + if (k == 1) { |
| 81 | + return cmp::min(nums1[index1], nums2[index2]); |
| 82 | + } |
| 83 | + let half = k / 2; |
| 84 | + new_index1 = cmp::min(index1 + half, length1) - 1; |
| 85 | + new_index2 = cmp::min(index2 + half, length2) - 1; |
| 86 | + if (nums1[new_index1] <= nums2[new_index2]) { |
| 87 | + k -= new_index1 - index1 + 1; |
| 88 | + index1 = new_index1 + 1; |
| 89 | + } else { |
| 90 | + k -= new_index2 - index2 + 1; |
| 91 | + index2 = new_index2 + 1; |
| 92 | + } |
| 93 | + } |
| 94 | + } |
| 95 | +} |
| 96 | + |
| 97 | +#[cfg(test)] |
| 98 | +mod tests { |
| 99 | + use super::*; |
| 100 | + |
| 101 | + #[test] |
| 102 | + fn test_004() { |
| 103 | + assert_eq!( |
| 104 | + Solution::find_median_sorted_arrays(vec![1, 3], vec![2]), |
| 105 | + 2.0 |
| 106 | + ); |
| 107 | + |
| 108 | + assert_eq!( |
| 109 | + Solution::find_median_sorted_arrays(vec![1, 2], vec![3, 4]), |
| 110 | + 2.5 |
| 111 | + ) |
| 112 | + } |
| 113 | +} |
0 commit comments