forked from kamyu104/LeetCode-Solutions
-
Notifications
You must be signed in to change notification settings - Fork 1
/
longest-increasing-subsequence.py
61 lines (57 loc) · 1.7 KB
/
longest-increasing-subsequence.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
# Time: O(nlogn)
# Space: O(n)
#
# Given an unsorted array of integers,
# find the length of longest increasing subsequence.
#
# For example,
# Given [10, 9, 2, 5, 3, 7, 101, 18],
# The longest increasing subsequence is [2, 3, 7, 101],
# therefore the length is 4. Note that there may be more
# than one LIS combination, it is only necessary for you to return the length.
#
# Your algorithm should run in O(n2) complexity.
#
# Follow up: Could you improve it to O(n log n) time complexity?
#
# Binary search solution.
class Solution(object):
def lengthOfLIS(self, nums):
"""
:type nums: List[int]
:rtype: int
"""
LIS = []
def insert(target):
left, right = 0, len(LIS) - 1
# Find the first index "left" which satisfies LIS[left] >= target
while left <= right:
mid = left + (right - left) / 2;
if LIS[mid] >= target:
right = mid - 1
else:
left = mid + 1
# If not found, append the target.
if left == len(LIS):
LIS.append(target);
else:
LIS[left] = target
for num in nums:
insert(num)
return len(LIS)
# Time: O(n^2)
# Space: O(n)
# Traditional DP solution.
class Solution2(object):
def lengthOfLIS(self, nums):
"""
:type nums: List[int]
:rtype: int
"""
dp = [] # dp[i]: the length of LIS ends with nums[i]
for i in xrange(len(nums)):
dp.append(1)
for j in xrange(i):
if nums[j] < nums[i]:
dp[i] = max(dp[i], dp[j] + 1)
return max(dp) if dp else 0