forked from kamyu104/LeetCode-Solutions
-
Notifications
You must be signed in to change notification settings - Fork 1
/
minimum-size-subarray-sum.py
60 lines (55 loc) · 1.97 KB
/
minimum-size-subarray-sum.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
# Time: O(n)
# Space: O(1)
#
# Given an array of n positive integers and a positive integer s,
# find the minimal length of a subarray of which the sum ≥ s. If there isn't one, return 0 instead.
#
# For example, given the array [2,3,1,2,4,3] and s = 7,
# the subarray [4,3] has the minimal length under the problem constraint.
#
# More practice:
# If you have figured out the O(n) solution, try coding another solution of which the time complexity is O(n log n).
#
# Sliding window solution.
class Solution:
# @param {integer} s
# @param {integer[]} nums
# @return {integer}
def minSubArrayLen(self, s, nums):
start = 0
sum = 0
min_size = float("inf")
for i in xrange(len(nums)):
sum += nums[i]
while sum >= s:
min_size = min(min_size, i - start + 1)
sum -= nums[start]
start += 1
return min_size if min_size != float("inf") else 0
# Time: O(nlogn)
# Space: O(n)
# Binary search solution.
class Solution2:
# @param {integer} s
# @param {integer[]} nums
# @return {integer}
def minSubArrayLen(self, s, nums):
min_size = float("inf")
sum_from_start = [n for n in nums]
for i in xrange(len(sum_from_start) - 1):
sum_from_start[i + 1] += sum_from_start[i]
for i in xrange(len(sum_from_start)):
end = self.binarySearch(lambda x, y: x <= y, sum_from_start, \
i, len(sum_from_start), \
sum_from_start[i] - nums[i] + s)
if end < len(sum_from_start):
min_size = min(min_size, end - i + 1)
return min_size if min_size != float("inf") else 0
def binarySearch(self, compare, A, start, end, target):
while start < end:
mid = start + (end - start) / 2
if compare(target, A[mid]):
end = mid
else:
start = mid + 1
return start