使用卷积神经网络进行文本分类
CNN做句子分类的论文可以参看: Convolutional Neural Networks for Sentence Classification
还可以去读dennybritz大牛的博客:Implementing a CNN for Text Classification in TensorFlow
本文是基于TensorFlow在中文数据集上的另一种实现,如果你觉得对你有帮助,欢迎star与交流。
- Python 3.5
- TensorFlow 1.3
使用THUCNews的一个子集进行训练与测试,数据集请自行到THUCTC:一个高效的中文文本分类工具包下载,请遵循数据提供方的开源协议。
本次训练使用了其中的10个分类,每个分类6500条数据。
类别如下:
体育, 财经, 房产, 家居, 教育, 科技, 时尚, 时政, 游戏, 娱乐
数据集划分如下:
- 训练集: 5000*10
- 验证集: 500*10
- 测试集: 1000*10
从原数据集生成子集的过程请参看helper
下的两个脚本。其中,copy_data.sh
用于从每个分类拷贝6500个文件,cnews_group.py
用于将多个文件整合到一个文件中。执行该文件后,得到三个数据文件:
- cnews.train.txt: 训练集(50000条)
- cnews.val.txt: 验证集(5000条)
- cnews.test.txt: 测试集(10000条)
data/cnews_loader.py
为数据的预处理文件。
read_file()
:读取上一部分生成的数据文件,将内容和标签分开返回;_build_vocab()
: 构建词汇表,这里不需要对文档进行分词,单字的效果已经很好,这一函数会将词汇表存储下来,避免每一次重复处理;_read_vocab()
: 读取上一步存储的词汇表,转换为{词:id}
表示;_read_category()
: 将分类目录固定,转换为{类别: id}
表示;_file_to_ids()
: 基于上面定义的函数,将数据集从文字转换为id表示;to_words()
: 将一条由id表示的数据重新转换为文字;preocess_file()
: 一次性处理所有的数据并返回;batch_iter()
: 为神经网络的训练准备批次的数据。
经过数据预处理,数据的格式如下:
Data | Shape | Data | Shape |
---|---|---|---|
x_train | [50000, 600] | y_train | [50000, 10] |
x_val | [5000, 600] | y_val | [5000, 10] |
x_test | [10000, 600] | y_test | [10000, 10] |
可配置的参数如下所示,在model.py
的上部。
class TCNNConfig(object):
"""配置参数"""
# 模型参数
embedding_dim = 64 # 词向量维度
seq_length = 600 # 序列长度
num_classes = 10 # 类别数
num_filters = 256 # 卷积核数目
kernel_size = 5 # 卷积核尺寸
vocab_size = 5000 # 词汇表达小
hidden_dim = 128 # 全链接层神经元
dropout_keep_prob = 0.8 # dropout保留比例
learning_rate = 1e-3 # 学习率
batch_size = 128 # 每批训练大小
num_epochs = 10 # 总迭代轮次
原始的模型如下图所示:
可看到它使用了多个不同宽度的卷积核然后将它们做了一个max over time pooling转换为一个长的特征向量,再使用softmax进行分类。
实验发现,简单的cnn也能达到较好的效果。
因此在这里使用的是简化版的结构,具体参看model.py
。
首先在初始化时,需要定义两个placeholder
作为输入输出占位符。
def __init__(self, config):
self.config = config
self.input_x = tf.placeholder(tf.int32,
[None, self.config.seq_length], name='input_x')
self.input_y = tf.placeholder(tf.float32,
[None, self.config.num_classes], name='input_y')
self.cnn()
词嵌入将词的id映射为词向量表示,embedding层会在训练时更新。
def input_embedding(self):
"""词嵌入"""
with tf.device('/cpu:0'):
embedding = tf.get_variable('embedding',
[self.config.vocab_size, self.config.embedding_dim])
_inputs = tf.nn.embedding_lookup(embedding, self.input_x)
return _inputs
cnn模型中,首先定义一个一维卷积层,再使用tf.reduce_max
实现global max pooling。再接两个dense层分别做映射和分类。使用交叉熵损失函数,Adam优化器,并且计算准确率。这里有许多参数可调,大部分可以通过调整TCNNConfig类即可。
def cnn(self):
"""cnnc模型"""
embedding_inputs = self.input_embedding()
with tf.name_scope("cnn"):
# cnn 与全局最大池化
conv = tf.layers.conv1d(embedding_inputs,
self.config.num_filters,
self.config.kernel_size, name='conv')
# global max pooling
gmp = tf.reduce_max(conv, reduction_indices=[1], name='gmp')
with tf.name_scope("score"):
# 全连接层,后面接dropout以及relu激活
fc = tf.layers.dense(gmp, self.config.hidden_dim, name='fc1')
fc = tf.contrib.layers.dropout(fc,
self.config.dropout_keep_prob)
fc = tf.nn.relu(fc)
# 分类器
self.logits = tf.layers.dense(fc, self.config.num_classes,
name='fc2')
self.pred_y = tf.nn.softmax(self.logits)
with tf.name_scope("loss"):
# 损失函数,交叉熵
cross_entropy = tf.nn.softmax_cross_entropy_with_logits(
logits=self.logits, labels=self.input_y)
self.loss = tf.reduce_mean(cross_entropy)
with tf.name_scope("optimize"):
# 优化器
optimizer = tf.train.AdamOptimizer(
learning_rate=self.config.learning_rate)
self.optim = optimizer.minimize(self.loss)
with tf.name_scope("accuracy"):
# 准确率
correct_pred = tf.equal(tf.argmax(self.input_y, 1),
tf.argmax(self.pred_y, 1))
self.acc = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
这一部分详见代码,具体不在此叙述。
在设定迭代轮次为10的时候,测试集达到了96.64%的准确率,可见效果还是很理想的。
Loading data...
Using CNN model...
Time usage: 0:00:19
Constructing TensorFlow Graph...
Generating batch...
Training and evaluating...
Iter: 200, Train Loss: 0.19, Train Acc: 95.31%, Val Loss: 0.39, Val Acc: 88.80%, Time: 0:00:11
Iter: 400, Train Loss: 0.21, Train Acc: 93.75%, Val Loss: 0.24, Val Acc: 93.08%, Time: 0:00:22
Iter: 600, Train Loss: 0.092, Train Acc: 97.66%, Val Loss: 0.21, Val Acc: 94.26%, Time: 0:00:33
Iter: 800, Train Loss: 0.079, Train Acc: 98.44%, Val Loss: 0.2, Val Acc: 94.64%, Time: 0:00:43
Iter: 1000, Train Loss: 0.19, Train Acc: 94.53%, Val Loss: 0.24, Val Acc: 92.82%, Time: 0:00:54
Iter: 1200, Train Loss: 0.12, Train Acc: 96.09%, Val Loss: 0.18, Val Acc: 94.72%, Time: 0:01:04
Iter: 1400, Train Loss: 0.062, Train Acc: 98.44%, Val Loss: 0.22, Val Acc: 92.92%, Time: 0:01:15
Iter: 1600, Train Loss: 0.008, Train Acc: 100.00%, Val Loss: 0.19, Val Acc: 94.32%, Time: 0:01:25
Iter: 1800, Train Loss: 0.011, Train Acc: 100.00%, Val Loss: 0.23, Val Acc: 93.34%, Time: 0:01:35
Iter: 2000, Train Loss: 0.014, Train Acc: 99.22%, Val Loss: 0.22, Val Acc: 93.34%, Time: 0:01:46
Iter: 2200, Train Loss: 0.015, Train Acc: 99.22%, Val Loss: 0.21, Val Acc: 94.20%, Time: 0:01:56
Iter: 2400, Train Loss: 0.0035, Train Acc: 100.00%, Val Loss: 0.18, Val Acc: 94.84%, Time: 0:02:06
Iter: 2600, Train Loss: 0.0018, Train Acc: 100.00%, Val Loss: 0.22, Val Acc: 93.78%, Time: 0:02:16
Iter: 2800, Train Loss: 0.0019, Train Acc: 100.00%, Val Loss: 0.23, Val Acc: 93.94%, Time: 0:02:27
Iter: 3000, Train Loss: 0.0014, Train Acc: 100.00%, Val Loss: 0.23, Val Acc: 93.68%, Time: 0:02:37
Iter: 3200, Train Loss: 0.0065, Train Acc: 100.00%, Val Loss: 0.22, Val Acc: 94.50%, Time: 0:02:47
Iter: 3400, Train Loss: 0.0022, Train Acc: 100.00%, Val Loss: 0.22, Val Acc: 94.94%, Time: 0:02:58
Iter: 3600, Train Loss: 0.0084, Train Acc: 99.22%, Val Loss: 0.31, Val Acc: 92.44%, Time: 0:03:08
Iter: 3800, Train Loss: 0.0048, Train Acc: 100.00%, Val Loss: 0.22, Val Acc: 94.62%, Time: 0:03:18
Evaluating on test set...
Test Loss: 0.14, Test Acc: 96.64%
准确率和误差如图所示:
RNN模型,在100轮迭代后,得到了95.38%的准确率,且速度相对CNN要慢很多。
Loading data...
Using RNN model...
Time usage: 0:00:17
Constructing TensorFlow Graph...
Generating batch...
Training and evaluating...
Iter: 1, Train Loss: 2.3, Train Acc: 10.94%, Val Loss: 2.3, Val Acc: 8.34%, Time: 0:00:08
Iter: 201, Train Loss: 0.47, Train Acc: 85.94%, Val Loss: 0.61, Val Acc: 82.70%, Time: 0:02:18
Iter: 401, Train Loss: 0.18, Train Acc: 92.97%, Val Loss: 0.46, Val Acc: 86.88%, Time: 0:04:28
Iter: 601, Train Loss: 0.21, Train Acc: 95.31%, Val Loss: 0.45, Val Acc: 87.08%, Time: 0:06:37
Iter: 801, Train Loss: 0.16, Train Acc: 95.31%, Val Loss: 0.4, Val Acc: 89.50%, Time: 0:08:47
Iter: 1001, Train Loss: 0.24, Train Acc: 91.41%, Val Loss: 0.41, Val Acc: 90.04%, Time: 0:10:56
Iter: 1201, Train Loss: 0.041, Train Acc: 99.22%, Val Loss: 0.43, Val Acc: 89.50%, Time: 0:13:05
Iter: 1401, Train Loss: 0.1, Train Acc: 96.09%, Val Loss: 0.33, Val Acc: 90.78%, Time: 0:15:14
Iter: 1601, Train Loss: 0.12, Train Acc: 96.88%, Val Loss: 0.37, Val Acc: 91.18%, Time: 0:17:23
Iter: 1801, Train Loss: 0.11, Train Acc: 96.88%, Val Loss: 0.35, Val Acc: 91.54%, Time: 0:19:32
Iter: 2001, Train Loss: 0.055, Train Acc: 98.44%, Val Loss: 0.35, Val Acc: 91.76%, Time: 0:21:41
Iter: 2201, Train Loss: 0.24, Train Acc: 93.75%, Val Loss: 0.4, Val Acc: 89.98%, Time: 0:23:49
Iter: 2401, Train Loss: 0.073, Train Acc: 97.66%, Val Loss: 0.37, Val Acc: 90.32%, Time: 0:25:57
Iter: 2601, Train Loss: 0.029, Train Acc: 99.22%, Val Loss: 0.46, Val Acc: 88.62%, Time: 0:28:05
Iter: 2801, Train Loss: 0.013, Train Acc: 100.00%, Val Loss: 0.52, Val Acc: 88.18%, Time: 0:30:13
Iter: 3001, Train Loss: 0.033, Train Acc: 99.22%, Val Loss: 0.38, Val Acc: 90.88%, Time: 0:32:19
Iter: 3201, Train Loss: 0.017, Train Acc: 100.00%, Val Loss: 0.42, Val Acc: 89.72%, Time: 0:34:25
Iter: 3401, Train Loss: 0.045, Train Acc: 99.22%, Val Loss: 0.46, Val Acc: 89.38%, Time: 0:36:31
Iter: 3601, Train Loss: 0.027, Train Acc: 99.22%, Val Loss: 0.43, Val Acc: 89.10%, Time: 0:38:37
Iter: 3801, Train Loss: 0.017, Train Acc: 100.00%, Val Loss: 0.43, Val Acc: 89.18%, Time: 0:40:43
Iter: 4001, Train Loss: 0.033, Train Acc: 98.44%, Val Loss: 0.51, Val Acc: 88.56%, Time: 0:42:49
Iter: 4201, Train Loss: 0.098, Train Acc: 96.88%, Val Loss: 0.48, Val Acc: 88.64%, Time: 0:44:55
Iter: 4401, Train Loss: 0.011, Train Acc: 100.00%, Val Loss: 0.47, Val Acc: 89.92%, Time: 0:47:01
Iter: 4601, Train Loss: 0.033, Train Acc: 98.44%, Val Loss: 0.35, Val Acc: 92.02%, Time: 0:49:06
Iter: 4801, Train Loss: 0.0057, Train Acc: 100.00%, Val Loss: 0.47, Val Acc: 89.74%, Time: 0:51:12
Iter: 5001, Train Loss: 0.037, Train Acc: 98.44%, Val Loss: 0.41, Val Acc: 90.30%, Time: 0:53:18
Iter: 5201, Train Loss: 0.012, Train Acc: 99.22%, Val Loss: 0.44, Val Acc: 90.36%, Time: 0:55:24
Iter: 5401, Train Loss: 0.016, Train Acc: 100.00%, Val Loss: 0.45, Val Acc: 90.80%, Time: 0:57:31
Iter: 5601, Train Loss: 0.016, Train Acc: 100.00%, Val Loss: 0.49, Val Acc: 89.74%, Time: 0:59:37
Iter: 5801, Train Loss: 0.029, Train Acc: 99.22%, Val Loss: 0.49, Val Acc: 90.24%, Time: 1:01:43
Iter: 6001, Train Loss: 0.0023, Train Acc: 100.00%, Val Loss: 0.5, Val Acc: 90.30%, Time: 1:03:49
Iter: 6201, Train Loss: 0.058, Train Acc: 98.44%, Val Loss: 0.57, Val Acc: 88.82%, Time: 1:05:55
Iter: 6401, Train Loss: 0.042, Train Acc: 99.22%, Val Loss: 0.54, Val Acc: 89.36%, Time: 1:08:01
Iter: 6601, Train Loss: 0.017, Train Acc: 99.22%, Val Loss: 0.56, Val Acc: 89.38%, Time: 1:10:07
Iter: 6801, Train Loss: 0.017, Train Acc: 99.22%, Val Loss: 0.49, Val Acc: 89.88%, Time: 1:12:13
Iter: 7001, Train Loss: 0.0016, Train Acc: 100.00%, Val Loss: 0.45, Val Acc: 90.80%, Time: 1:14:19
Iter: 7201, Train Loss: 0.0043, Train Acc: 100.00%, Val Loss: 0.6, Val Acc: 89.08%, Time: 1:16:25
Iter: 7401, Train Loss: 0.03, Train Acc: 98.44%, Val Loss: 0.46, Val Acc: 90.32%, Time: 1:18:31
Iter: 7601, Train Loss: 0.025, Train Acc: 99.22%, Val Loss: 0.49, Val Acc: 91.02%, Time: 1:20:37
Iter: 7801, Train Loss: 0.0034, Train Acc: 100.00%, Val Loss: 0.51, Val Acc: 89.26%, Time: 1:22:43
Iter: 8001, Train Loss: 0.0075, Train Acc: 100.00%, Val Loss: 0.65, Val Acc: 88.88%, Time: 1:24:49
Iter: 8201, Train Loss: 0.017, Train Acc: 99.22%, Val Loss: 0.71, Val Acc: 88.54%, Time: 1:26:55
Iter: 8401, Train Loss: 0.019, Train Acc: 99.22%, Val Loss: 0.67, Val Acc: 88.86%, Time: 1:29:01
Iter: 8601, Train Loss: 0.0084, Train Acc: 99.22%, Val Loss: 0.49, Val Acc: 90.18%, Time: 1:31:07
Iter: 8801, Train Loss: 0.0017, Train Acc: 100.00%, Val Loss: 0.5, Val Acc: 90.50%, Time: 1:33:13
Iter: 9001, Train Loss: 0.0013, Train Acc: 100.00%, Val Loss: 0.39, Val Acc: 92.52%, Time: 1:35:19
Iter: 9201, Train Loss: 0.0084, Train Acc: 100.00%, Val Loss: 0.43, Val Acc: 92.32%, Time: 1:37:25
Iter: 9401, Train Loss: 0.024, Train Acc: 99.22%, Val Loss: 0.67, Val Acc: 88.74%, Time: 1:39:31
Iter: 9601, Train Loss: 0.00096, Train Acc: 100.00%, Val Loss: 0.63, Val Acc: 90.22%, Time: 1:41:37
Iter: 9801, Train Loss: 0.00087, Train Acc: 100.00%, Val Loss: 0.5, Val Acc: 91.18%, Time: 1:43:43
Iter: 10001, Train Loss: 0.0024, Train Acc: 100.00%, Val Loss: 0.45, Val Acc: 91.82%, Time: 1:45:49
Iter: 10201, Train Loss: 0.0018, Train Acc: 100.00%, Val Loss: 0.52, Val Acc: 89.82%, Time: 1:47:55
Iter: 10401, Train Loss: 0.00084, Train Acc: 100.00%, Val Loss: 0.66, Val Acc: 89.32%, Time: 1:50:01
Iter: 10601, Train Loss: 0.00038, Train Acc: 100.00%, Val Loss: 0.6, Val Acc: 90.28%, Time: 1:52:07
Iter: 10801, Train Loss: 0.0012, Train Acc: 100.00%, Val Loss: 0.62, Val Acc: 89.56%, Time: 1:54:13
Iter: 11001, Train Loss: 0.0026, Train Acc: 100.00%, Val Loss: 0.59, Val Acc: 89.80%, Time: 1:56:18
Iter: 11201, Train Loss: 0.0086, Train Acc: 99.22%, Val Loss: 0.45, Val Acc: 92.14%, Time: 1:58:24
Iter: 11401, Train Loss: 0.014, Train Acc: 99.22%, Val Loss: 0.54, Val Acc: 90.70%, Time: 2:00:31
Iter: 11601, Train Loss: 0.004, Train Acc: 100.00%, Val Loss: 0.63, Val Acc: 89.44%, Time: 2:02:37
Iter: 11801, Train Loss: 0.043, Train Acc: 99.22%, Val Loss: 0.73, Val Acc: 88.46%, Time: 2:04:43
Iter: 12001, Train Loss: 0.016, Train Acc: 99.22%, Val Loss: 0.68, Val Acc: 88.64%, Time: 2:06:49
Iter: 12201, Train Loss: 0.0012, Train Acc: 100.00%, Val Loss: 0.72, Val Acc: 88.92%, Time: 2:08:55
Iter: 12401, Train Loss: 0.0039, Train Acc: 100.00%, Val Loss: 0.61, Val Acc: 89.40%, Time: 2:11:01
Iter: 12601, Train Loss: 0.00032, Train Acc: 100.00%, Val Loss: 0.53, Val Acc: 90.78%, Time: 2:13:07
Iter: 12801, Train Loss: 0.022, Train Acc: 99.22%, Val Loss: 0.67, Val Acc: 89.38%, Time: 2:15:13
Iter: 13001, Train Loss: 0.00014, Train Acc: 100.00%, Val Loss: 0.61, Val Acc: 90.60%, Time: 2:17:19
Iter: 13201, Train Loss: 0.0028, Train Acc: 100.00%, Val Loss: 0.63, Val Acc: 89.58%, Time: 2:19:25
Iter: 13401, Train Loss: 0.005, Train Acc: 100.00%, Val Loss: 0.65, Val Acc: 90.38%, Time: 2:21:31
Iter: 13601, Train Loss: 0.00077, Train Acc: 100.00%, Val Loss: 0.61, Val Acc: 90.88%, Time: 2:23:37
Iter: 13801, Train Loss: 0.0018, Train Acc: 100.00%, Val Loss: 0.67, Val Acc: 90.96%, Time: 2:25:43
Iter: 14001, Train Loss: 0.087, Train Acc: 99.22%, Val Loss: 0.59, Val Acc: 90.72%, Time: 2:27:49
Iter: 14201, Train Loss: 0.00018, Train Acc: 100.00%, Val Loss: 0.66, Val Acc: 90.12%, Time: 2:29:55
Iter: 14401, Train Loss: 8.1e-05, Train Acc: 100.00%, Val Loss: 0.56, Val Acc: 91.46%, Time: 2:32:01
Iter: 14601, Train Loss: 0.0013, Train Acc: 100.00%, Val Loss: 0.59, Val Acc: 90.34%, Time: 2:34:07
Iter: 14801, Train Loss: 0.0018, Train Acc: 100.00%, Val Loss: 0.5, Val Acc: 91.66%, Time: 2:36:13
Iter: 15001, Train Loss: 0.00024, Train Acc: 100.00%, Val Loss: 0.6, Val Acc: 90.40%, Time: 2:38:19
Iter: 15201, Train Loss: 0.0017, Train Acc: 100.00%, Val Loss: 0.64, Val Acc: 89.78%, Time: 2:40:25
Iter: 15401, Train Loss: 6.2e-05, Train Acc: 100.00%, Val Loss: 0.55, Val Acc: 91.70%, Time: 2:42:31
Iter: 15601, Train Loss: 6.7e-05, Train Acc: 100.00%, Val Loss: 0.76, Val Acc: 89.64%, Time: 2:44:37
Iter: 15801, Train Loss: 0.0016, Train Acc: 100.00%, Val Loss: 0.67, Val Acc: 90.40%, Time: 2:46:43
Iter: 16001, Train Loss: 0.00021, Train Acc: 100.00%, Val Loss: 0.68, Val Acc: 89.68%, Time: 2:48:49
Iter: 16201, Train Loss: 0.001, Train Acc: 100.00%, Val Loss: 0.81, Val Acc: 88.78%, Time: 2:50:55
Iter: 16401, Train Loss: 0.0044, Train Acc: 100.00%, Val Loss: 0.56, Val Acc: 90.34%, Time: 2:53:01
Iter: 16601, Train Loss: 0.00032, Train Acc: 100.00%, Val Loss: 0.68, Val Acc: 90.34%, Time: 2:55:07
Iter: 16801, Train Loss: 0.093, Train Acc: 98.44%, Val Loss: 0.65, Val Acc: 89.90%, Time: 2:57:13
Iter: 17001, Train Loss: 0.0025, Train Acc: 100.00%, Val Loss: 0.62, Val Acc: 91.64%, Time: 2:59:19
Iter: 17201, Train Loss: 0.00017, Train Acc: 100.00%, Val Loss: 0.72, Val Acc: 89.72%, Time: 3:01:25
Iter: 17401, Train Loss: 0.00085, Train Acc: 100.00%, Val Loss: 0.72, Val Acc: 89.66%, Time: 3:03:31
Iter: 17601, Train Loss: 2.8e-05, Train Acc: 100.00%, Val Loss: 0.7, Val Acc: 90.50%, Time: 3:05:37
Iter: 17801, Train Loss: 0.0003, Train Acc: 100.00%, Val Loss: 0.7, Val Acc: 90.10%, Time: 3:07:43
Iter: 18001, Train Loss: 0.036, Train Acc: 99.22%, Val Loss: 0.67, Val Acc: 89.48%, Time: 3:09:49
Iter: 18201, Train Loss: 0.00082, Train Acc: 100.00%, Val Loss: 0.59, Val Acc: 90.76%, Time: 3:11:55
Iter: 18401, Train Loss: 0.012, Train Acc: 99.22%, Val Loss: 0.68, Val Acc: 91.12%, Time: 3:14:01
Iter: 18601, Train Loss: 0.0018, Train Acc: 100.00%, Val Loss: 0.5, Val Acc: 93.22%, Time: 3:16:07
Iter: 18801, Train Loss: 0.00015, Train Acc: 100.00%, Val Loss: 0.58, Val Acc: 90.84%, Time: 3:18:13
Iter: 19001, Train Loss: 0.0023, Train Acc: 100.00%, Val Loss: 0.68, Val Acc: 90.40%, Time: 3:20:18
Iter: 19201, Train Loss: 0.013, Train Acc: 99.22%, Val Loss: 0.6, Val Acc: 91.00%, Time: 3:22:24
Iter: 19401, Train Loss: 0.00097, Train Acc: 100.00%, Val Loss: 0.66, Val Acc: 90.38%, Time: 3:24:30
Iter: 19601, Train Loss: 5.3e-05, Train Acc: 100.00%, Val Loss: 0.69, Val Acc: 90.68%, Time: 3:26:36
Iter: 19801, Train Loss: 0.00044, Train Acc: 100.00%, Val Loss: 0.73, Val Acc: 90.00%, Time: 3:28:42
Iter: 20001, Train Loss: 0.0016, Train Acc: 100.00%, Val Loss: 0.77, Val Acc: 89.60%, Time: 3:30:48
Iter: 20201, Train Loss: 0.00074, Train Acc: 100.00%, Val Loss: 0.86, Val Acc: 89.66%, Time: 3:32:54
Iter: 20401, Train Loss: 0.00034, Train Acc: 100.00%, Val Loss: 0.8, Val Acc: 90.32%, Time: 3:35:00
Iter: 20601, Train Loss: 0.002, Train Acc: 100.00%, Val Loss: 0.65, Val Acc: 89.86%, Time: 3:37:05
Iter: 20801, Train Loss: 0.00016, Train Acc: 100.00%, Val Loss: 0.61, Val Acc: 91.20%, Time: 3:39:11
Iter: 21001, Train Loss: 0.00056, Train Acc: 100.00%, Val Loss: 0.64, Val Acc: 90.20%, Time: 3:41:17
Iter: 21201, Train Loss: 3.1e-05, Train Acc: 100.00%, Val Loss: 0.65, Val Acc: 91.16%, Time: 3:43:23
Iter: 21401, Train Loss: 0.00039, Train Acc: 100.00%, Val Loss: 0.65, Val Acc: 92.20%, Time: 3:45:29
Iter: 21601, Train Loss: 5.3e-05, Train Acc: 100.00%, Val Loss: 0.72, Val Acc: 89.76%, Time: 3:47:35
Iter: 21801, Train Loss: 0.0013, Train Acc: 100.00%, Val Loss: 0.6, Val Acc: 91.86%, Time: 3:49:41
Iter: 22001, Train Loss: 0.0063, Train Acc: 100.00%, Val Loss: 0.57, Val Acc: 92.74%, Time: 3:51:47
Iter: 22201, Train Loss: 0.018, Train Acc: 99.22%, Val Loss: 0.61, Val Acc: 91.10%, Time: 3:53:53
Iter: 22401, Train Loss: 1e-05, Train Acc: 100.00%, Val Loss: 0.66, Val Acc: 91.44%, Time: 3:55:59
Iter: 22601, Train Loss: 0.00098, Train Acc: 100.00%, Val Loss: 0.69, Val Acc: 90.64%, Time: 3:58:05
Iter: 22801, Train Loss: 0.00073, Train Acc: 100.00%, Val Loss: 0.84, Val Acc: 89.54%, Time: 4:00:10
Iter: 23001, Train Loss: 0.001, Train Acc: 100.00%, Val Loss: 0.71, Val Acc: 90.90%, Time: 4:02:17
Iter: 23201, Train Loss: 0.0026, Train Acc: 100.00%, Val Loss: 0.74, Val Acc: 90.48%, Time: 4:04:23
Iter: 23401, Train Loss: 0.0048, Train Acc: 100.00%, Val Loss: 0.93, Val Acc: 89.64%, Time: 4:06:29
Iter: 23601, Train Loss: 0.0048, Train Acc: 100.00%, Val Loss: 0.63, Val Acc: 91.44%, Time: 4:08:35
Iter: 23801, Train Loss: 9.8e-05, Train Acc: 100.00%, Val Loss: 0.7, Val Acc: 91.14%, Time: 4:10:41
Iter: 24001, Train Loss: 0.00025, Train Acc: 100.00%, Val Loss: 0.79, Val Acc: 90.46%, Time: 4:12:46
Iter: 24201, Train Loss: 5.4e-05, Train Acc: 100.00%, Val Loss: 0.8, Val Acc: 90.44%, Time: 4:14:52
Iter: 24401, Train Loss: 0.00044, Train Acc: 100.00%, Val Loss: 0.83, Val Acc: 89.94%, Time: 4:16:58
Iter: 24601, Train Loss: 0.0068, Train Acc: 99.22%, Val Loss: 0.8, Val Acc: 89.92%, Time: 4:19:04
Iter: 24801, Train Loss: 0.0013, Train Acc: 100.00%, Val Loss: 1.0, Val Acc: 89.64%, Time: 4:21:10
Iter: 25001, Train Loss: 0.00026, Train Acc: 100.00%, Val Loss: 0.9, Val Acc: 90.24%, Time: 4:23:16
Iter: 25201, Train Loss: 0.00016, Train Acc: 100.00%, Val Loss: 1.1, Val Acc: 88.86%, Time: 4:25:22
Iter: 25401, Train Loss: 0.0026, Train Acc: 100.00%, Val Loss: 0.91, Val Acc: 89.86%, Time: 4:27:28
Iter: 25601, Train Loss: 0.0011, Train Acc: 100.00%, Val Loss: 1.0, Val Acc: 89.74%, Time: 4:29:34
Iter: 25801, Train Loss: 0.023, Train Acc: 99.22%, Val Loss: 1.1, Val Acc: 88.68%, Time: 4:31:40
Iter: 26001, Train Loss: 0.00015, Train Acc: 100.00%, Val Loss: 1.0, Val Acc: 89.56%, Time: 4:33:46
Iter: 26201, Train Loss: 0.0021, Train Acc: 100.00%, Val Loss: 0.8, Val Acc: 89.86%, Time: 4:35:52
Iter: 26401, Train Loss: 0.0022, Train Acc: 100.00%, Val Loss: 0.77, Val Acc: 89.86%, Time: 4:37:58
Iter: 26601, Train Loss: 0.00069, Train Acc: 100.00%, Val Loss: 0.77, Val Acc: 90.96%, Time: 4:40:04
Iter: 26801, Train Loss: 0.012, Train Acc: 99.22%, Val Loss: 0.71, Val Acc: 90.92%, Time: 4:42:10
Iter: 27001, Train Loss: 1e-05, Train Acc: 100.00%, Val Loss: 0.72, Val Acc: 90.86%, Time: 4:44:16
Iter: 27201, Train Loss: 0.0002, Train Acc: 100.00%, Val Loss: 0.79, Val Acc: 90.24%, Time: 4:46:22
Iter: 27401, Train Loss: 0.0001, Train Acc: 100.00%, Val Loss: 0.86, Val Acc: 90.42%, Time: 4:48:28
Iter: 27601, Train Loss: 5.9e-05, Train Acc: 100.00%, Val Loss: 0.91, Val Acc: 90.04%, Time: 4:50:34
Iter: 27801, Train Loss: 1.1e-05, Train Acc: 100.00%, Val Loss: 0.81, Val Acc: 89.98%, Time: 4:52:41
Iter: 28001, Train Loss: 3.7e-06, Train Acc: 100.00%, Val Loss: 0.91, Val Acc: 89.60%, Time: 4:54:47
Iter: 28201, Train Loss: 0.0014, Train Acc: 100.00%, Val Loss: 0.8, Val Acc: 90.28%, Time: 4:56:54
Iter: 28401, Train Loss: 0.00013, Train Acc: 100.00%, Val Loss: 0.83, Val Acc: 90.52%, Time: 4:59:00
Iter: 28601, Train Loss: 2.9e-05, Train Acc: 100.00%, Val Loss: 0.63, Val Acc: 90.90%, Time: 5:01:07
Iter: 28801, Train Loss: 0.0001, Train Acc: 100.00%, Val Loss: 0.78, Val Acc: 89.08%, Time: 5:03:13
Iter: 29001, Train Loss: 0.001, Train Acc: 100.00%, Val Loss: 0.57, Val Acc: 91.64%, Time: 5:05:20
Iter: 29201, Train Loss: 0.0017, Train Acc: 100.00%, Val Loss: 0.62, Val Acc: 91.42%, Time: 5:07:26
Iter: 29401, Train Loss: 6e-05, Train Acc: 100.00%, Val Loss: 0.67, Val Acc: 90.06%, Time: 5:09:33
Iter: 29601, Train Loss: 0.0016, Train Acc: 100.00%, Val Loss: 0.56, Val Acc: 92.86%, Time: 5:11:39
Iter: 29801, Train Loss: 3e-05, Train Acc: 100.00%, Val Loss: 0.63, Val Acc: 92.64%, Time: 5:13:46
Iter: 30001, Train Loss: 0.00012, Train Acc: 100.00%, Val Loss: 0.64, Val Acc: 93.04%, Time: 5:15:52
Iter: 30201, Train Loss: 0.0002, Train Acc: 100.00%, Val Loss: 0.74, Val Acc: 91.06%, Time: 5:17:59
Iter: 30401, Train Loss: 0.013, Train Acc: 99.22%, Val Loss: 0.83, Val Acc: 88.98%, Time: 5:20:05
Iter: 30601, Train Loss: 0.00078, Train Acc: 100.00%, Val Loss: 0.68, Val Acc: 90.42%, Time: 5:22:11
Iter: 30801, Train Loss: 0.0089, Train Acc: 99.22%, Val Loss: 0.78, Val Acc: 89.96%, Time: 5:24:18
Iter: 31001, Train Loss: 0.0001, Train Acc: 100.00%, Val Loss: 0.82, Val Acc: 90.02%, Time: 5:26:24
Iter: 31201, Train Loss: 1.8e-05, Train Acc: 100.00%, Val Loss: 0.7, Val Acc: 90.70%, Time: 5:28:31
Iter: 31401, Train Loss: 0.065, Train Acc: 99.22%, Val Loss: 0.83, Val Acc: 89.86%, Time: 5:30:37
Iter: 31601, Train Loss: 0.00013, Train Acc: 100.00%, Val Loss: 0.77, Val Acc: 89.52%, Time: 5:32:44
Iter: 31801, Train Loss: 0.00057, Train Acc: 100.00%, Val Loss: 0.68, Val Acc: 91.10%, Time: 5:34:50
Iter: 32001, Train Loss: 4.5e-05, Train Acc: 100.00%, Val Loss: 0.7, Val Acc: 90.80%, Time: 5:36:57
Iter: 32201, Train Loss: 0.0002, Train Acc: 100.00%, Val Loss: 0.84, Val Acc: 90.10%, Time: 5:39:03
Iter: 32401, Train Loss: 0.001, Train Acc: 100.00%, Val Loss: 0.61, Val Acc: 91.68%, Time: 5:41:09
Iter: 32601, Train Loss: 5.7e-06, Train Acc: 100.00%, Val Loss: 0.71, Val Acc: 91.34%, Time: 5:43:16
Iter: 32801, Train Loss: 0.005, Train Acc: 100.00%, Val Loss: 0.66, Val Acc: 92.58%, Time: 5:45:23
Iter: 33001, Train Loss: 4.5e-06, Train Acc: 100.00%, Val Loss: 0.64, Val Acc: 92.78%, Time: 5:47:29
Iter: 33201, Train Loss: 0.00017, Train Acc: 100.00%, Val Loss: 0.7, Val Acc: 91.42%, Time: 5:49:36
Iter: 33401, Train Loss: 2.1e-05, Train Acc: 100.00%, Val Loss: 0.84, Val Acc: 92.24%, Time: 5:51:42
Iter: 33601, Train Loss: 0.002, Train Acc: 100.00%, Val Loss: 0.69, Val Acc: 91.72%, Time: 5:53:48
Iter: 33801, Train Loss: 0.00018, Train Acc: 100.00%, Val Loss: 1.1, Val Acc: 88.38%, Time: 5:55:55
Iter: 34001, Train Loss: 0.0025, Train Acc: 100.00%, Val Loss: 0.76, Val Acc: 90.64%, Time: 5:58:01
Iter: 34201, Train Loss: 1.8e-05, Train Acc: 100.00%, Val Loss: 0.8, Val Acc: 90.30%, Time: 6:00:08
Iter: 34401, Train Loss: 0.0044, Train Acc: 100.00%, Val Loss: 0.87, Val Acc: 91.18%, Time: 6:02:15
Iter: 34601, Train Loss: 1e-05, Train Acc: 100.00%, Val Loss: 0.74, Val Acc: 92.58%, Time: 6:04:21
Iter: 34801, Train Loss: 0.0067, Train Acc: 100.00%, Val Loss: 0.86, Val Acc: 88.58%, Time: 6:06:27
Iter: 35001, Train Loss: 0.018, Train Acc: 99.22%, Val Loss: 0.69, Val Acc: 92.00%, Time: 6:08:34
Iter: 35201, Train Loss: 5.4e-06, Train Acc: 100.00%, Val Loss: 0.62, Val Acc: 92.92%, Time: 6:10:40
Iter: 35401, Train Loss: 0.00035, Train Acc: 100.00%, Val Loss: 0.67, Val Acc: 91.60%, Time: 6:12:47
Iter: 35601, Train Loss: 0.00022, Train Acc: 100.00%, Val Loss: 0.75, Val Acc: 89.76%, Time: 6:14:53
Iter: 35801, Train Loss: 0.0055, Train Acc: 100.00%, Val Loss: 0.81, Val Acc: 90.62%, Time: 6:17:00
Iter: 36001, Train Loss: 2.9e-05, Train Acc: 100.00%, Val Loss: 0.75, Val Acc: 90.94%, Time: 6:19:06
Iter: 36201, Train Loss: 0.00011, Train Acc: 100.00%, Val Loss: 0.74, Val Acc: 91.90%, Time: 6:21:13
Iter: 36401, Train Loss: 5.1e-06, Train Acc: 100.00%, Val Loss: 0.75, Val Acc: 91.98%, Time: 6:23:19
Iter: 36601, Train Loss: 1.5e-05, Train Acc: 100.00%, Val Loss: 0.83, Val Acc: 90.40%, Time: 6:25:26
Iter: 36801, Train Loss: 6e-06, Train Acc: 100.00%, Val Loss: 0.79, Val Acc: 92.06%, Time: 6:27:32
Iter: 37001, Train Loss: 0.00027, Train Acc: 100.00%, Val Loss: 0.7, Val Acc: 91.66%, Time: 6:29:39
Iter: 37201, Train Loss: 0.00033, Train Acc: 100.00%, Val Loss: 0.67, Val Acc: 92.28%, Time: 6:31:45
Iter: 37401, Train Loss: 0.0036, Train Acc: 100.00%, Val Loss: 0.69, Val Acc: 92.02%, Time: 6:33:52
Iter: 37601, Train Loss: 6.3e-05, Train Acc: 100.00%, Val Loss: 0.62, Val Acc: 92.82%, Time: 6:35:58
Iter: 37801, Train Loss: 0.00015, Train Acc: 100.00%, Val Loss: 0.59, Val Acc: 92.80%, Time: 6:38:05
Iter: 38001, Train Loss: 4.6e-05, Train Acc: 100.00%, Val Loss: 0.64, Val Acc: 91.08%, Time: 6:40:11
Iter: 38201, Train Loss: 2.1e-05, Train Acc: 100.00%, Val Loss: 0.57, Val Acc: 92.76%, Time: 6:42:18
Iter: 38401, Train Loss: 0.00021, Train Acc: 100.00%, Val Loss: 0.65, Val Acc: 92.06%, Time: 6:44:24
Iter: 38601, Train Loss: 0.0021, Train Acc: 100.00%, Val Loss: 0.8, Val Acc: 91.36%, Time: 6:46:31
Iter: 38801, Train Loss: 0.0057, Train Acc: 99.22%, Val Loss: 0.72, Val Acc: 91.04%, Time: 6:48:37
Iter: 39001, Train Loss: 0.00031, Train Acc: 100.00%, Val Loss: 0.71, Val Acc: 92.44%, Time: 6:50:44
Evaluating on test set...
Test Loss: 0.43, Test Acc: 95.38%