forked from songgc/TF-recomm
-
Notifications
You must be signed in to change notification settings - Fork 0
/
svd_train_val.py
89 lines (73 loc) · 3.46 KB
/
svd_train_val.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
import tensorflow as tf
from tensorflow.python.framework import graph_util
import dataio
import numpy as np
from collections import deque
from six import next
import time
import ops
np.random.seed(13575)
BATCH_SIZE = 1000
USER_NUM = 6040
ITEM_NUM = 3952
DIM = 15
EPOCH_MAX = 100
DEVICE = "/cpu:0"
def clip(x):
return np.clip(x, 1.0, 5.0)
def get_data():
df = dataio.read_process("/tmp/movielens/ml-1m/ratings.dat", sep="::")
rows = len(df)
df = df.iloc[np.random.permutation(rows)].reset_index(drop=True)
split_index = int(rows * 0.9)
df_train = df[0:split_index]
df_test = df[split_index:].reset_index(drop=True)
return df_train, df_test
def svd(train, test):
samples_per_batch = len(train) // BATCH_SIZE
iter_train = dataio.ShuffleIterator([train["user"],
train["item"],
train["rate"]],
batch_size=BATCH_SIZE)
iter_test = dataio.OneEpochIterator([test["user"],
test["item"],
test["rate"]],
batch_size=-1)
user_batch = tf.placeholder(tf.int32, shape=[None], name="id_user")
item_batch = tf.placeholder(tf.int32, shape=[None], name="id_item")
rate_batch = tf.placeholder(tf.float32, shape=[None])
infer, regularizer = ops.inference_svd(user_batch, item_batch, user_num=USER_NUM, item_num=ITEM_NUM, dim=DIM,
device=DEVICE)
_, train_op = ops.optimiaztion(infer, regularizer, rate_batch, learning_rate=0.001, reg=0.05, device=DEVICE)
init_op = tf.initialize_all_variables()
with tf.Session() as sess:
sess.run(init_op)
print("{} {} {} {}".format("epoch", "train_error", "val_error", "elapsed_time"))
errors = deque(maxlen=samples_per_batch)
start = time.time()
for i in range(EPOCH_MAX * samples_per_batch):
users, items, rates = next(iter_train)
_, pred_batch = sess.run([train_op, infer], feed_dict={user_batch: users,
item_batch: items,
rate_batch: rates})
pred_batch = clip(pred_batch)
errors.append(np.power(pred_batch - rates, 2))
if i % samples_per_batch == 0:
train_err = np.sqrt(np.mean(errors))
test_err2 = np.array([])
for users, items, rates in iter_test:
pred_batch = sess.run(infer, feed_dict={user_batch: users,
item_batch: items})
pred_batch = clip(pred_batch)
test_err2 = np.append(test_err2, np.power(pred_batch - rates, 2))
end = time.time()
print("{:3d} {:f} {:f} {:f}(s)".format(i // samples_per_batch, train_err, np.sqrt(np.mean(test_err2)),
end - start))
start = end
output_graph_def = graph_util.extract_sub_graph(sess.graph.as_graph_def(),
["svd_inference", "svd_regularizer"])
tf.train.SummaryWriter(logdir="/tmp/svd", graph_def=output_graph_def)
if __name__ == '__main__':
df_train, df_test = get_data()
svd(df_train, df_test)
print("Done!")