-
Notifications
You must be signed in to change notification settings - Fork 28
/
Copy pathtrain.py
313 lines (264 loc) · 11.6 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
# -----------------------------------------------------
# Train Spatial Invariant Person Search Network
#
# Author: Liangqi Li
# Creating Date: Mar 31, 2018
# Latest rectified: Nov 5, 2018
# -----------------------------------------------------
import os
import time
import shutil
import yaml
import argparse
import torch
import torch.nn.functional as func
from torch.utils.data import DataLoader
from torch.optim import lr_scheduler
from utils.utils import clock_non_return, AverageMeter
from utils.logger import TensorBoardLogger
from dataset.sipn_dataset import SIPNDataset, sipn_fn, \
PersonSearchTripletSampler, PersonSearchTripletFn
import dataset.sipn_transforms as sipn_transforms
from models.model import SIPN
from utils.losses import TripletLoss, oim_loss
def parse_args():
"""Parse input arguments"""
parser = argparse.ArgumentParser(description='Training')
parser.add_argument('--net', default='res50', type=str,
help='Network Backbone')
parser.add_argument('--max_epoch', default=20, type=int,
help='Max epoch to train the model')
parser.add_argument('--data_dir', default='', type=str,
help='The root path to the dataset')
parser.add_argument('--dataset_name', default='prw', type=str,
help='The dataset name, `sysu` or `prw`')
parser.add_argument('--tensorboard_dir', default='./logs/TensorBoard',
help='The path to save TensorBoard files', type=str)
parser.add_argument('--lr', default=0.0001, type=float,
help='Initializing learning rate.')
parser.add_argument('--step_size', default=[7, 14], nargs='+', type=int,
help='Epoch steps to decay the learning rate')
parser.add_argument('--optimizer', default='SGD', type=str,
help='The optimizer using for the model')
parser.add_argument('--out_dir', default='./output', type=str,
help='The path to the saved models')
parser.add_argument('--pre_model', default='', type=str,
help='The path to the pre-trained model, or set as '
'`official` to use the official one')
parser.add_argument('--resume', default=0, type=int,
help='Epoch step to resume training the model')
parser.add_argument('--loss', default='oim', type=str,
help='The loss to train the model, `oim` or `tri`')
args = parser.parse_args()
return args
def train_model(dataloader, net, optimizer, epoch, criterion):
"""Train the model"""
lr = optimizer.param_groups[0]['lr']
data_time_end = time.time()
total_time_end = time.time()
with open('config.yml', 'r') as f:
config = yaml.load(f)
for iter_idx, data in enumerate(dataloader):
im, gt_boxes, im_info = data
if isinstance(im, tuple):
assert isinstance(gt_boxes, tuple)
assert isinstance(im_info, tuple)
im = tuple([x.to(device) for x in im])
gt_boxes = tuple([x.to(device) for x in gt_boxes])
q_im, p_im, n_im = im
q_box, p_boxes, n_boxes = gt_boxes
q_info, p_info, n_info = im_info
pid = int(q_box[:, -1].item())
data_time.update(time.time() - data_time_end)
train_time_end = time.time()
q_feat = net(q_im, q_box, q_info, mode='query')
p_det_loss, p_feat, p_label = net(p_im, p_boxes, p_info)
n_det_loss, n_feat, n_label = net(n_im, n_boxes, n_info)
del q_box, p_boxes, n_boxes, gt_boxes
q_feat = func.normalize(q_feat)
p_feat = func.normalize(p_feat)
n_feat = func.normalize(n_feat)
p_mask = (p_label.squeeze() != net.num_pid).nonzero(
).squeeze().view(-1)
p_label = p_label[p_mask]
p_feat = p_feat[p_mask]
n_mask = (n_label.squeeze() != net.num_pid).nonzero(
).squeeze().view(-1)
n_label = n_label[n_mask]
n_feat = n_feat[n_mask]
tri_label = torch.cat((p_label, n_label)).squeeze()
tri_feat = torch.cat((p_feat, n_feat), 0)
reid_loss = criterion(q_feat, pid, tri_feat, tri_label)
del q_feat, p_feat, n_feat
del p_label, n_label
losses = [x + y for x, y in zip(p_det_loss, n_det_loss)]
losses.append(reid_loss)
else:
im = im.to(device)
gt_boxes = gt_boxes.squeeze(0).to(device)
im_info = im_info.ravel()
data_time.update(time.time() - data_time_end)
train_time_end = time.time()
det_loss, feat, label = net(im, gt_boxes, im_info)
feat = func.normalize(feat)
reid_loss = oim_loss(feat, label, net.lut, net.queue,
gt_boxes.size(0), net.lut_momentum)
losses = list(det_loss)
losses.append(reid_loss)
# Backward
optimizer.zero_grad()
sum_loss = sum(losses)
sum_loss.backward()
optimizer.step()
# Compute average loss and average time over all iterations
current_loss = sum_loss.item()
total_loss.update(current_loss)
train_time.update(time.time() - train_time_end)
# Show status
if (iter_idx + 1) % config['disp_interval'] == 0:
print('Epoch {:2d}, iter {:5d}, average loss: {:.6f}, lr: '
'{:.2e}'.format(epoch+1, iter_idx+1, total_loss.avg, lr))
print('>>>> rpn_cls: {:.6f}'.format(losses[0].item()))
print('>>>> rpn_box: {:.6f}'.format(losses[1].item()))
print('>>>> cls: {:.6f}'.format(losses[2].item()))
print('>>>> box: {:.6f}'.format(losses[3].item()))
print('>>>> reid: {:.6f}'.format(losses[4].item()))
print('Data Average time: {:.3f}s/iter'.format(data_time.avg))
print('Training Average time: {:.3f}s/iter'.format(train_time.avg))
print('Total Average time: {:.3f}s/iter'.format(total_time.avg))
step = total_loss.count
# TensorBoard logging
if step % (config['disp_interval'] * 5) == 0:
# Scalar values
info = {'total_loss': current_loss,
'rpn_cls_loss': losses[0].item(),
'rpn_box_loss': losses[1].item(),
'cls_loss': losses[2].item(),
'box_loss': losses[3].item(),
'reid_loss': losses[4].item()}
for tag, value in info.items():
tensor_logger.scalar_summary(tag, value, step)
# Values of parameters and gradients
for tag, value in net.named_parameters():
tag = tag.replace('.', '/')
tensor_logger.hist_summary(tag, value.data.cpu().numpy(), step)
if value.requires_grad:
if value.grad is None:
continue
tensor_logger.hist_summary(
tag + '/grad', value.grad.data.cpu().numpy(), step)
torch.cuda.empty_cache()
total_time.update(time.time() - total_time_end)
data_time_end = time.time()
total_time_end = time.time()
@clock_non_return
def main():
opt = parse_args()
global device
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
torch.backends.cudnn.benchmark = True
torch.manual_seed(1024)
save_dir = os.path.join(opt.out_dir, opt.dataset_name)
print('Trained models will be saved to {}\n'.format(
os.path.abspath(save_dir)))
if not os.path.exists(save_dir):
os.makedirs(save_dir)
# Use TensorBoard to save visual results
global tensor_logger
tensorboard_dir = opt.tensorboard_dir
if not os.path.exists(tensorboard_dir):
os.makedirs(tensorboard_dir)
if os.listdir(tensorboard_dir): # Remove early TensorBoard files
shutil.rmtree(tensorboard_dir)
os.makedirs(tensorboard_dir)
tensor_logger = TensorBoardLogger(tensorboard_dir)
pre_model = opt.pre_model
if opt.resume != 0:
pre_model = ''
model = SIPN(opt.net, opt.dataset_name, pre_model)
model.to(device)
# Read the configuration file
with open('config.yml', 'r') as f:
config = yaml.load(f)
target_size = config['target_size']
max_size = config['max_size']
pixel_means = config['pixel_means']
# Compose transformations for the dataset
transform = sipn_transforms.Compose([
sipn_transforms.RandomHorizontalFlip(),
sipn_transforms.Scale(target_size, max_size),
sipn_transforms.ToTensor(),
sipn_transforms.Normalize(pixel_means)
])
# Load the dataset
dataset = SIPNDataset(opt.data_dir, opt.dataset_name, 'train', transform)
if opt.loss == 'tri':
sampler = PersonSearchTripletSampler(dataset)
collate_fn = PersonSearchTripletFn(dataset, sampler.batch_pids)
dataloader = DataLoader(
dataset, batch_sampler=sampler, collate_fn=collate_fn)
elif opt.loss == 'oim':
collate_fn = sipn_fn
dataloader = DataLoader(
dataset, shuffle=True, collate_fn=collate_fn, num_workers=8)
else:
raise KeyError(opt.loss)
# Choose parameters to be updated during training
lr = opt.lr
params = []
# print('These parameters will be updated during training:')
for key, value in dict(model.named_parameters()).items():
if value.requires_grad:
# print(key)
# TODO: set different decay for weight and bias
params += [{'params': [value], 'lr': lr, 'weight_decay': 1e-4}]
if opt.optimizer == 'SGD':
optimizer = torch.optim.SGD(params, momentum=0.9)
elif opt.optimizer == 'Adam':
optimizer = torch.optim.Adam(params)
else:
raise KeyError(opt.optimizer)
global total_loss
global data_time
global train_time
global total_time
start_epoch = opt.resume
criterion = TripletLoss()
total_loss = AverageMeter()
data_time = AverageMeter()
train_time = AverageMeter()
total_time = AverageMeter()
if opt.resume:
resume = os.path.join(save_dir, 'sipn_{}_{}.tar'.format(
opt.net, opt.resume))
print('Resuming model checkpoint from {}\n'.format(resume))
checkpoint = torch.load(resume)
start_epoch = checkpoint['epoch']
model.load_trained_model(checkpoint['model_state_dict'])
optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
total_loss = checkpoint['total_loss']
scheduler = lr_scheduler.MultiStepLR(optimizer, milestones=opt.step_size,
gamma=0.1, last_epoch=start_epoch-1)
# Train the model
for epoch in range(start_epoch, opt.max_epoch):
epoch_start = time.time()
model.train()
train_model(dataloader, model, optimizer, epoch, criterion)
scheduler.step()
try:
collate_fn.called_times = 0
except AttributeError:
pass
epoch_end = time.time()
print('\nEntire epoch time cost: {:.2f} hours\n'.format(
(epoch_end - epoch_start) / 3600))
# Save the trained model after each epoch
save_name = os.path.join(
save_dir, 'sipn_{}_{}.tar'.format(model.net_name, epoch + 1))
checkpoint = {'epoch': epoch + 1,
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'total_loss': total_loss}
torch.save(checkpoint, save_name)
if __name__ == '__main__':
main()