forked from samuelkim314/DeepSymReg
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathkinematics_sr_l0.py
167 lines (141 loc) · 6.7 KB
/
kinematics_sr_l0.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
import tensorflow as tf
import numpy as np
import os
import pickle
import argparse
from utils.symbolic_network import SymbolicNetL0, SymbolicCell
from utils import functions, pretty_print, helpers
def main(results_dir='results/kinematics/test', learning_rate=1e-2, reg_weight=1e-3, n_epochs=10001,
timesteps=5):
tf.reset_default_graph()
# Hyperparameters
summary_step = 1000
# tf.set_random_seed(0)
# Import parabola data
data = np.load('dataset/kinematic.npz')
x_d = np.asarray(data["x_d"])
x_v = np.asarray(data["x_v"])
y_d = np.asarray(data["y_d"])
y_v = np.asarray(data["y_v"])
a_data = np.asarray(data["g"])
# Prepare data
# The first few time steps are reserved for the symbolic regression propagator
x = np.stack((x_d, x_v), axis=2) # Shape (N, NT, 2)
y0 = np.stack((y_d[:, 0], y_v[:, 0]), axis=1) # Input into the symbolic propagator
y_data = np.stack((y_d[:, 1:timesteps + 1], y_v[:, 1:timesteps + 1]), axis=2) # shape(NG, LENGTH, 2)
# Encoder
encoder = helpers.Encoder() # layer should end with 1, which is the output
x_input = tf.placeholder(shape=(None, x.shape[1], x.shape[2]), dtype=tf.float32, name="enc_input")
y_input = tf.placeholder(shape=(None, timesteps, 2), dtype=tf.float32, name="label_input")
y0_input = tf.placeholder(shape=(None, 2), dtype=tf.float32, name="y_input") # input is d, v
length_input = tf.placeholder(dtype=tf.int32, shape=())
training = tf.placeholder_with_default(False, [])
z = encoder(x_input, training=training)
# enc_output = np.array(g_data)[:, np.newaxis] # uncomment to ignore the autoencoder
# Build EQL network for the propagating decoder
primitive_funcs = [
*[functions.Constant()] * 2,
*[functions.Identity()] * 4,
*[functions.Square()] * 4,
*[functions.Sin()] * 2,
*[functions.Exp()] * 2,
*[functions.Sigmoid()] * 2,
*[functions.Product(norm=0.1)] * 2,
]
prop_d = SymbolicNetL0(2, funcs=primitive_funcs)
prop_v = SymbolicNetL0(2, funcs=primitive_funcs)
prop_d.build(4)
prop_v.build(4)
# Build recurrent structure
rnn = tf.keras.layers.RNN(SymbolicCell(prop_d, prop_v), return_sequences=True)
y0_rnn = tf.concat([tf.expand_dims(y0_input, axis=1), tf.zeros((tf.shape(y0_input)[0], length_input - 1, 2))], axis=1)
prop_input = tf.concat([y0_rnn, tf.keras.backend.repeat(z, length_input),
tf.ones((tf.shape(y0_input)[0], length_input, 1))], axis=2)
y_hat = rnn(prop_input)
# Label and errors
reg_loss = prop_d.get_loss() + prop_v.get_loss()
# Training
learning_rate_ph = tf.placeholder(tf.float32)
opt = tf.train.RMSPropOptimizer(learning_rate=learning_rate_ph)
error = tf.losses.mean_squared_error(labels=y_input[:, :length_input, :], predictions=y_hat)
loss = error + reg_weight * reg_loss
train = opt.minimize(loss)
train = tf.group([train, encoder.bn.updates])
# Training session
config = tf.ConfigProto()
config.gpu_options.allow_growth = True # Take up variable amount of memory on GPU
with tf.Session(config=config) as sess:
loss_i = np.nan
while np.isnan(loss_i):
loss_list = []
error_list = []
reg_list = []
sess.run(tf.global_variables_initializer())
length_i = 1
for i in range(n_epochs):
lr_i = learning_rate
feed_dict = {x_input: x, y0_input: y0, y_input: y_data,
learning_rate_ph: lr_i, training: True, length_input: length_i}
_ = sess.run(train, feed_dict=feed_dict)
if i % summary_step == 0:
feed_dict[training] = False
loss_val, error_val, reg_val = sess.run((loss, error, reg_loss), feed_dict=feed_dict)
loss_list.append(loss_val)
error_list.append(error_val)
reg_list.append(reg_val)
print("Epoch %d\tTotal loss: %f\tError: %f\tReg loss: %f" % (i, loss_val, error_val, reg_val))
loss_i = loss_val
if i > 3000:
length_i = timesteps
if np.isnan(loss_i):
break
weights_d = sess.run(prop_d.get_weights())
expr_d = pretty_print.network(weights_d, primitive_funcs, ["d", "v", "z", 1])
print(expr_d)
weights_v = sess.run(prop_v.get_weights())
expr_v = pretty_print.network(weights_v, primitive_funcs, ["d", "v", "z", 1])
print(expr_v)
# z_arr = sess.run(enc_output, feed_dict=feed_dict)
# Save results
results = {
"timesteps": timesteps,
"summary_step": summary_step,
"learning_rate": learning_rate,
"N_EPOCHS": n_epochs,
"reg_weight": reg_weight,
"weights_d": weights_d,
"weights_v": weights_v,
"loss_plot": loss_list,
"error_plot": error_list,
"l12_plot": reg_list,
"expr_d": expr_d,
"expr_v": expr_v
}
trial_dir = helpers.get_trial_path(results_dir) # Get directory in which to save trial results
tf.saved_model.simple_save(sess, trial_dir,
inputs={"x": x_input, "y0": y0_input, "training": training},
outputs={"z": z, "y": y_hat})
# Save a summary of the parameters and results
with open(os.path.join(trial_dir, 'summary.pickle'), "wb+") as f:
pickle.dump(results, f)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description="Train the EQL network on kinematics task.")
parser.add_argument("--results-dir", type=str, default='results/kinematics/test_l0')
parser.add_argument("--reg-weight", type=float, default=1e-3, help='Regularization weight, lambda')
parser.add_argument('--learning-rate', type=float, default=1e-2, help='Base learning rate for training')
parser.add_argument("--n-epochs", type=int, default=10001, help="Number of epochs to train in each stage")
parser.add_argument("--timesteps", type=int, default=5, help="Number of epochs to train in each stage")
parser.add_argument('--trials', type=int, default=1, help="Number of trials to train.")
args = parser.parse_args()
kwargs = vars(args)
print(kwargs)
if not os.path.exists(kwargs['results_dir']):
os.makedirs(kwargs['results_dir'])
meta = open(os.path.join(kwargs['results_dir'], 'args.txt'), 'a')
import json
meta.write(json.dumps(kwargs))
meta.close()
trials = kwargs['trials']
del kwargs['trials']
for _ in range(trials):
main(**kwargs)