-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathtest_different_migration_cost_san.py
212 lines (174 loc) · 10.4 KB
/
test_different_migration_cost_san.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
from environment.batch_migration_env import BatchMigrationEnv
from environment.batch_migration_env import EnvironmentParameters
from sampler.migration_sampler import EvaluationSampler
from sampler.migration_sampler import MigrationSampler
from sampler.migration_sampler import MigrationSamplerProcess
from policies.always_migration_solution import always_migration_solution
from policies.optimal_solution import optimal_solution_for_batch_system_infos
from policies.no_migration_solution import no_migration_solution
import tensorflow as tf
import numpy as np
import utils.logger as logger
from sampler.migration_sampler import EvaluationSampler
from sampler.migration_sampler import EvaluationSamplerForDRQN
from sampler.migration_sampler import MigrationSampler
from sampler.migration_sampler import MigrationSamplerProcess
from baselines.rnn_critic_network_baseline import RNNCriticNetworkBaseline
from policies.random_solution import random_solution
from policies.optimal_solution import optimal_solution_for_batch_system_infos
from policies.no_migration_solution import no_migration_solution
from policies.fc_categorical_policy import FCCategoricalPolicyWithValue
from baselines.critic_network_baseline import CriticNetworkBaseline
from policies.always_migrate_policy import AlwaysMigratePolicy
from policies.q_network import QNetwork
from algorithms.dracm import DRACM
from dracm_trainer import Trainer
from algorithms.mab_ts import MABTSGuassianServiceMigration
from policies.rnn_q_network import RNNQNetwork
from policies.q_network import QNetwork
from policies.rnn_policy_with_action_input import RNNPolicyWithValue
logger.configure(dir="./log/test_migration_cost_san", format_strs=['stdout', 'log', 'csv'])
number_of_base_state = 64
x_base_state = 8
y_base_state = 8
# possion_rate_vector = np.random.randint(15, 31, size=number_of_base_state)
# print("possion_rate_vector is: ", repr(possion_rate_vector))
possion_rate_vector = [11, 8, 20, 9, 18, 18, 9, 17, 12, 17, 9, 17, 14, 10, 5, 7, 12,
8, 20, 10, 14, 12, 20, 14, 8, 6, 15, 7, 18, 9, 8, 18, 17, 7,
11, 11, 13, 14, 8, 18, 13, 17, 6, 18, 17, 18, 18, 7, 9, 6, 12,
10, 9, 8, 20, 14, 11, 15, 14, 6, 6, 15, 16, 20]
# start point (41.856, 12.442), end point (41.928,12.5387), a region in Roman, Italy.
env_eval_parameters =EnvironmentParameters(trace_start_index=120,
num_traces=30,
server_frequency=128.0, # GHz
num_base_station=number_of_base_state,
optical_fiber_trans_rate=500.0,
backhaul_coefficient=0.02,
migration_coefficient_low=1.0,
migration_coefficient_high=3.0,
server_poisson_rate=possion_rate_vector,
client_poisson_rate=2,
server_task_data_lower_bound=(0.05 * 1000.0 * 1000.0 * 8),
server_task_data_higher_bound=(5 * 1000.0 * 1000.0 * 8),
client_task_data_lower_bound=(0.05 * 1000.0 * 1000.0 * 8),
client_task_data_higher_bound=(5 * 1000.0 * 1000.0 * 8),
migration_size_low=0.5,
migration_size_high=100.0,
ratio_lower_bound=200.0,
ratio_higher_bound=10000.0,
map_width=8000.0, map_height=8000.0,
num_horizon_servers=x_base_state, num_vertical_servers=y_base_state,
traces_file_path='./environment/san_traces_coordinate.txt',
transmission_rates=[60.0, 48.0, 36.0, 24.0, 12.0], # Mbps
trace_length=100,
trace_interval=3,
is_full_observation=False,
is_full_action=True)
env = BatchMigrationEnv(env_eval_parameters)
eval_sample_size = 30
rnn_policy = RNNPolicyWithValue(observation_dim=env._state_dim,
action_dim=env._action_dim,
rnn_parameter=256,
embbeding_size=2)
vf_baseline = RNNCriticNetworkBaseline(rnn_policy)
eval_sampler = EvaluationSampler(env,
policy=rnn_policy,
batch_size=eval_sample_size,
max_path_length=100)
sampler_process = MigrationSamplerProcess(baseline=vf_baseline,
discount=0.99,
gae_lambda=0.95,
normalize_adv=True,
positive_adv=False)
fc_policy = FCCategoricalPolicyWithValue(observation_dim=env._state_dim,
action_dim=env._action_dim,
fc_parameters=[256])
vf_baseline = CriticNetworkBaseline(fc_policy)
fc_eval_sampler = EvaluationSampler(env,
policy=fc_policy,
batch_size=10,
max_path_length=100)
algo = DRACM(policy=rnn_policy,
value_function=rnn_policy,
policy_optimizer=tf.keras.optimizers.Adam(5e-4),
value_optimizer=tf.keras.optimizers.Adam(5e-4),
is_rnn=True,
is_shared_critic_net=True,
num_inner_grad_steps=4,
clip_value=0.2,
vf_coef=0.5,
max_grad_norm=0.5,
entropy_coef=0.01)
rnn_q_network = RNNQNetwork(observation_dim=env._state_dim,
action_dim=env._action_dim,
rnn_parameter=256,
fc_parameters=128,
epsilon=0.1)
rnn_q_net_sampler = EvaluationSamplerForDRQN(env,
policy=rnn_q_network,
batch_size=eval_sample_size,
max_path_length=100)
q_network = QNetwork(observation_dim=env._state_dim,
action_dim=env._action_dim,
hidden_parameter=256,
fc_parameters=128,
epsilon=0.1)
q_network_eval_sampler = EvaluationSamplerForDRQN(env,
policy=q_network,
batch_size=30,
max_path_length=100,
is_rnn=False)
dracm_model_path = "./checkpoints_san/checkpoints_ppo_64-bs-new-2/model_checkpoint_epoch_115"
fc_dracm_model_path = "./checkpoints_san/checkpoints_ppo_64-bs-new-2-no-rnn/model_checkpoint_epoch_115"
drqn_model_path = "./checkpoints_san/checkpoints_drqn_san_64-bs-new/model_checkpoint_3800"
dqn_model_path = "./checkpoints_san/checkpoints_dqn_san_64-bs-new/model_checkpoint_3800"
rnn_policy.load_weights(dracm_model_path)
logger.log("Load rnn model successfully....")
fc_policy.load_weights(fc_dracm_model_path)
logger.log("Load fc model successfully....")
rnn_q_network.load_weights(drqn_model_path)
logger.log("Load rnn q network model successfully ....")
q_network.load_weights(dqn_model_path)
logger.log("Load q network model successfully ....")
migration_co_set = [1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0]
for migration_co in migration_co_set:
print("migration coefficient: ", migration_co)
env.migration_coefficient_high = migration_co
env.migration_coefficient_low = migration_co
am_eval_sampler = EvaluationSampler(env,
policy=AlwaysMigratePolicy(env._state_dim,action_dim=env._action_dim),
batch_size=30,
max_path_length=100)
rewards, system_infos = am_eval_sampler.obtain_samples(is_rnn=False)
system_infos = np.array(system_infos)
logger.log("processing sample's system_info shape", system_infos.shape)
always_migration_latency = always_migration_solution(env, system_infos)
logger.log("always migration latency is: ", always_migration_latency)
never_migration_latency = no_migration_solution(env, system_infos)
logger.log("no migration latency is: ", never_migration_latency)
optimal_rewards = optimal_solution_for_batch_system_infos(env, system_infos)
logger.log("optimal latency is: ", optimal_rewards)
random_rewards = random_solution(env, system_infos)
logger.log("random latency is: ", random_rewards)
dqn_rewards_collects, _ = q_network_eval_sampler.obtain_samples(is_rnn=False)
drqn_rewards_collects, _ = rnn_q_net_sampler.obtain_samples(is_rnn=True)
fc_reward_collects, _ = fc_eval_sampler.obtain_samples(is_rnn=False, is_greedy_sample=False)
sample_reward_collects, _ = eval_sampler.obtain_samples(is_rnn=rnn_policy,
is_greedy_sample=False)
reward_collects, system_info_collects = eval_sampler.obtain_samples(is_rnn=rnn_policy,
is_greedy_sample=True)
env.reset()
mab_ts_algo = MABTSGuassianServiceMigration(env)
totoal_rewards = mab_ts_algo.train(num_iteration=3)
mab_ts_rewards = totoal_rewards[-1]
dqn_rewards = np.mean(np.sum(dqn_rewards_collects, axis=-1))
drqn_rewards = np.mean(np.sum(drqn_rewards_collects, axis=-1))
fc_ppo_rewards = np.mean(np.sum(fc_reward_collects, axis=-1))
ppo_rewards = np.mean(np.sum(reward_collects, axis=-1))
ppo_sample_rewards = np.mean(np.sum(sample_reward_collects, axis=-1))
logger.log("eval fc ppo latency ", -fc_ppo_rewards)
logger.log("eval dqn latency ", -dqn_rewards)
logger.log("eval drqn latency ", -drqn_rewards)
logger.log("eval sample latency ", -ppo_sample_rewards)
logger.log("eval latency ", -ppo_rewards)
logger.log("eval mab-ts reward ", -mab_ts_rewards)