-
Notifications
You must be signed in to change notification settings - Fork 32
/
Copy pathonline_logical_clustering.py
executable file
·305 lines (228 loc) · 9.64 KB
/
online_logical_clustering.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
#!/usr/bin/env python3
import os
import sys
from datetime import datetime
import datetime as dt
import argparse
import csv
import numpy as np
import time
import itertools
import random
import pickle
import re
import math
import matplotlib.pyplot as plt
import matplotlib.ticker as plticker
import matplotlib.dates as mpdates
import matplotlib as mpl
from sortedcontainers import SortedDict
from sklearn.preprocessing import normalize
from sklearn.neighbors import NearestNeighbors
from logical_clustering_utility.schemaParser import extract_tables_and_columns
from logical_clustering_utility.buildVectors import create_vectors
csv.field_size_limit(sys.maxsize)
OUTPUT_DIR = 'online-logical-clustering-results/'
YLABEL = r"# Queries / min"
STATEMENTS = ['select', 'SELECT', 'INSERT', 'insert', 'UPDATE', 'update', 'delete', 'DELETE']
# "2016-10-31","17:50:21.344030"
DATETIME_FORMAT = "%Y-%m-%d %H:%M:%S" # Strip milliseconds ".%f"
TESTING = False
USE_KNN = True
KNN_ALG = "kd_tree"
def LoadData(input_path):
total_queries = dict()
templates = []
min_date = datetime.max
max_date = datetime.min
data = dict()
cnt = 0
for csv_file in sorted(os.listdir(input_path)):
print(csv_file)
with open(input_path + "/" + csv_file, 'r') as f:
reader = csv.reader(f)
queries, template = next(reader)
# To make the matplotlib work...
template = template.replace('$', '')
# Assume we already filtered out other types of queries when combining template csvs
#statement = template.split(' ',1)[0]
#if not statement in STATEMENTS:
# continue
#print queries, template
total_queries[template] = int(queries)
#print queries
templates.append(template)
# add template
data[template] = SortedDict()
for line in reader:
time_stamp = datetime.strptime(line[0], DATETIME_FORMAT)
count = int(line[1])
data[template][time_stamp] = count
min_date = min(min_date, time_stamp)
max_date = max(max_date, time_stamp)
cnt += 1
if TESTING:
if cnt == 10:
break
templates = sorted(templates)
return min_date, max_date, data, total_queries, templates
def Similarity(x, y):
return np.dot(x, y) / (np.linalg.norm(x) * np.linalg.norm(y) + 1e-6)
def AdjustCluster(min_date, current_date, next_date, data, last_ass, next_cluster, centers,
cluster_totals, total_queries, cluster_sizes, rho, vector_dict):
new_ass = last_ass.copy()
print("Building kdtree for single point assignment")
clusters = sorted(centers.keys())
samples = list()
for cluster in clusters:
sample = centers[cluster]
samples.append(sample)
if len(samples) == 0:
nbrs = None
else:
normalized_samples = normalize(np.array(samples), copy = False)
nbrs = NearestNeighbors(n_neighbors=1, algorithm=KNN_ALG, metric='l2')
nbrs.fit(normalized_samples)
print("Finish building kdtree for single point assignment")
cnt = 0
for t in sorted(data.keys()):
cnt += 1
# Test whether this template still belongs to the original cluster
if new_ass[t] != -1:
center = centers[new_ass[t]]
#print(cnt, new_ass[t], Similarity(data[t], center, index))
if cluster_sizes[new_ass[t]] == 1 or Similarity(vector_dict[t], center) > rho:
continue
# the template is eliminated from the original cluster
if new_ass[t] != -1:
cluster = new_ass[t]
cluster_sizes[cluster] -= 1
centers[cluster] -= vector_dict[t]
cluster_totals[cluster] -= total_queries[t]
print("%s: template %s quit from cluster %d with total %d" % (next_date, cnt, cluster,
total_queries[t]))
# Whether this template has "arrived" yet?
if new_ass[t] == -1 and len(list(data[t].irange(current_date, next_date))) == 0:
continue
new_cluster = None
if nbrs != None:
# whether this template is similar to the center of an existing cluster
nbr = nbrs.kneighbors(normalize([vector_dict[t]]), return_distance = False)[0][0]
if Similarity(vector_dict[t], centers[clusters[nbr]]) > rho:
new_cluster = clusters[nbr]
if new_cluster != None:
if new_ass[t] == -1:
print("%s: template %s joined cluster %d with total %d" % (next_date, cnt,
new_cluster, total_queries[t]))
else:
print("%s: template %s reassigned to cluster %d with total %d" % (next_date,
cnt, new_cluster, total_queries[t]))
new_ass[t] = new_cluster
centers[cluster] += vector_dict[t]
cluster_totals[cluster] += total_queries[t]
cluster_sizes[new_cluster] += 1
continue
if new_ass[t] == -1:
print("%s: template %s created cluster as %d with total %d" % (next_date, cnt,
next_cluster, total_queries[t]))
else:
print("%s: template %s recreated cluster as %d with total %d" % (next_date, cnt,
next_cluster, total_queries[t]))
new_ass[t] = next_cluster
centers[next_cluster] = vector_dict[t]
cluster_sizes[next_cluster] = 1
cluster_totals[next_cluster] = total_queries[t]
next_cluster += 1
clusters = list(centers.keys())
# a union-find set to track the root cluster for clusters that have been merged
root = [-1] * len(clusters)
print("Building kdtree for cluster merging")
samples = list()
for cluster in clusters:
sample = centers[cluster]
samples.append(sample)
if len(samples) == 0:
nbrs = None
else:
normalized_samples = normalize(np.array(samples), copy = False)
nbrs = NearestNeighbors(n_neighbors=2, algorithm=KNN_ALG, metric='l2')
nbrs.fit(normalized_samples)
print("Finish building kdtree for cluster merging")
for i in range(len(clusters)):
c1 = clusters[i]
c = None
if nbrs != None:
nbr = nbrs.kneighbors([centers[c1]], return_distance = False)[0]
if clusters[nbr[0]] == c1:
nbr = nbr[1]
else:
nbr = nbr[0]
while root[nbr] != -1:
nbr = root[nbr]
if c1 != clusters[nbr] and Similarity(centers[c1], centers[clusters[nbr]]) > rho:
c = clusters[nbr]
if c != None:
centers[c] += centers[c1]
cluster_sizes[c] += cluster_sizes[c1]
del centers[c1]
del cluster_sizes[c1]
if nbrs != None:
root[i] = nbr
for t in data.keys():
if new_ass[t] == c1:
new_ass[t] = c
print("%d assigned to %d with total %d" % (c1, c, total_queries[t]))
print("%s: cluster %d merged into cluster %d" % (next_date, c1, c))
return new_ass, next_cluster
def OnlineClustering(min_date, max_date, data, total_queries, rho, vector_dict):
print(rho)
cluster_gap = 1440
n = (max_date - min_date).seconds // 60 + (max_date - min_date).days * 1440 + 1
num_gaps = n // cluster_gap
centers = dict()
cluster_totals = dict()
cluster_sizes = dict()
assignments = []
ass = dict()
for t in data.keys():
ass[t] = -1
assignments.append((min_date, ass))
current_date = min_date
next_cluster = 0
for i in range(num_gaps):
next_date = current_date + dt.timedelta(minutes = cluster_gap)
assign, next_cluster = AdjustCluster(min_date, current_date, next_date, data, assignments[-1][1],
next_cluster, centers, cluster_totals, total_queries, cluster_sizes, rho,
vector_dict)
assignments.append((next_date, assign))
current_date = next_date
return next_cluster, assignments, cluster_totals
# ==============================================
# main
# ==============================================
if __name__ == '__main__':
aparser = argparse.ArgumentParser(description='Logical clusreting')
aparser.add_argument('--dir', default="combined-results", help='The directory that contains the time series'
'csv files')
aparser.add_argument('--schema_path', help='The path of the schema file')
aparser.add_argument('--project', help='The name of the workload')
aparser.add_argument('--rho', default=0.8, help='The threshold to determine'
'whether a query template belongs to a cluster')
args = vars(aparser.parse_args())
if not os.path.exists(OUTPUT_DIR):
os.makedirs(OUTPUT_DIR)
min_date, max_date, data, total_queries, templates = LoadData(args['dir'])
# Pre-processing: template extraction + schema parsing + preprocessing
schema_file = open(args['schema_path'], 'r')
schema_dict = extract_tables_and_columns(schema_file)
# Get logical vectors for query templates
vector_dict = create_vectors(templates, schema_dict)
num_clusters, assignment_dict, cluster_totals = OnlineClustering(min_date, max_date, data,
total_queries, float(args['rho']), vector_dict)
with open(OUTPUT_DIR + "{}-{}-assignments.pickle".format(args['project'], args['rho']),
'wb') as f: # Python 3: open(..., 'wb')
pickle.dump((num_clusters, assignment_dict, cluster_totals), f)
print(num_clusters)
print(cluster_totals)
print(sum(cluster_totals.values()))
print(sum(total_queries.values()))