We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
import cv2 import numpy as np import sys class Image_Stitching(): def __init__(self) : self.ratio=0.85 self.min_match=10 self.sift=cv2.SIFT_create() self.smoothing_window_size=800 def registration(self,img1,img2,img3): kp1, des1 = self.sift.detectAndCompute(img1, None) kp2, des2 = self.sift.detectAndCompute(img2, None) kp3, des3 = self.sift.detectAndCompute(img3, None) matcher = cv2.BFMatcher() raw_matches = matcher.knnMatch(des1, des2, des3, k=3) good_points = [] good_matches=[] for m1, m2 in raw_matches: if m1.distance < self.ratio * m2.distance: good_points.append((m1.trainIdx, m1.queryIdx)) good_matches.append([m1]) img3 = cv2.drawMatchesKnn(img1, kp1, img2, kp2, img3, kp3, good_matches, None, flags=3) cv2.imwrite('matching.jpg', img3) if len(good_points) > self.min_match: image1_kp = np.float32( [kp1[i].pt for (_, i) in good_points]) image2_kp = np.float32( [kp2[i].pt for (i, _) in good_points]) image3_kp = np.float32( [kp3[i].pt for (i, _) in good_points]) H, status = cv2.findHomography(image2_kp, image1_kp,image3_kp, cv2.RANSAC,5.0) return H def create_mask(self,img1,img2,img3,version): height_img1 = img1.shape[0] width_img1 = img1.shape[1] width_img2 = img2.shape[1] width_img3 = img3.shape[1] height_panorama = height_img1 width_panorama = width_img1 +width_img2 +width_img3 offset = int(self.smoothing_window_size / 2) barrier = img1.shape[1] - int(self.smoothing_window_size / 2) mask = np.zeros((height_panorama, width_panorama)) if version== 'left_image': mask[:, barrier - offset:barrier + offset ] = np.tile(np.linspace(1, 0, 2 * offset ).T, (height_panorama, 1)) mask[:, :barrier - offset] = 1 else: mask[:, barrier - offset :barrier + offset ] = np.tile(np.linspace(0, 1, 2 * offset ).T, (height_panorama, 1)) mask[:, barrier + offset:] = 1 return cv2.merge([mask, mask, mask]) def blending(self,img1,img2,img3): H = self.registration(img1,img2,img3) height_img1 = img1.shape[0] width_img1 = img1.shape[1] width_img2 = img2.shape[1] width_img3 = img3.shape[1] height_panorama = height_img1 width_panorama = width_img1 +width_img2 +width_img3 panorama1 = np.zeros((height_panorama, width_panorama, 3)) mask1 = self.create_mask(img1,img2,img3,version='left_image') panorama1[0:img1.shape[0], 0:img1.shape[1], :] = img1 panorama1 *= mask1 mask2 = self.create_mask(img1,img2,img3,version='right_image') panorama2 = cv2.warpPerspective(img2, H, (width_panorama, height_panorama))*mask2 panorama1 *= mask2 mask3 = self.create_mask(img1,img2,img3,version='right_image') panorama3 = cv2.warpPerspective(img3, H, (width_panorama, height_panorama))*mask3 result=panorama1+panorama2+panorama3 rows, cols = np.where(result[:, :, 0] != 0) min_row, max_row = min(rows), max(rows) + 1 min_col, max_col = min(cols), max(cols) + 1 final_result = result[min_row:max_row, min_col:max_col, :] return final_result def main(argv1,argv2,argv3): img1 = cv2.imread(argv1) img2 = cv2.imread(argv2) img3 = cv2.imread(argv3) final=Image_Stitching().blending(img1,img2,img3) cv2.imwrite('panorama.jpg', final) if __name__ == '__main__': try: main(sys.argv[1],sys.argv[2],sys.argv[3]) except IndexError: print ("Please input two source images: ") print ("For example: python Image_Stitching.py '/Users/linrl3/Desktop/picture/p1.jpg' '/Users/linrl3/Desktop/picture/p2.jpg'")
My method is wrong
The text was updated successfully, but these errors were encountered:
No branches or pull requests
My method is wrong
The text was updated successfully, but these errors were encountered: