Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

How to three pictures #5

Open
monkeycc opened this issue Jul 29, 2022 · 0 comments
Open

How to three pictures #5

monkeycc opened this issue Jul 29, 2022 · 0 comments

Comments

@monkeycc
Copy link

import cv2
import numpy as np
import sys

class Image_Stitching():
    def __init__(self) :
        self.ratio=0.85
        self.min_match=10
        self.sift=cv2.SIFT_create()
        self.smoothing_window_size=800

    def registration(self,img1,img2,img3):
        kp1, des1 = self.sift.detectAndCompute(img1, None)
        kp2, des2 = self.sift.detectAndCompute(img2, None)
        kp3, des3 = self.sift.detectAndCompute(img3, None)

        matcher = cv2.BFMatcher()
        raw_matches = matcher.knnMatch(des1, des2, des3, k=3)
        good_points = []
        good_matches=[]
        for m1, m2 in raw_matches:
            if m1.distance < self.ratio * m2.distance:
                good_points.append((m1.trainIdx, m1.queryIdx))
                good_matches.append([m1])
        img3 = cv2.drawMatchesKnn(img1, kp1, img2, kp2, img3, kp3, good_matches, None, flags=3)
        cv2.imwrite('matching.jpg', img3)
        if len(good_points) > self.min_match:
            image1_kp = np.float32(
                [kp1[i].pt for (_, i) in good_points])
            image2_kp = np.float32(
                [kp2[i].pt for (i, _) in good_points])
            image3_kp = np.float32(
                [kp3[i].pt for (i, _) in good_points])
            H, status = cv2.findHomography(image2_kp, image1_kp,image3_kp, cv2.RANSAC,5.0)
        return H

    def create_mask(self,img1,img2,img3,version):
        height_img1 = img1.shape[0]
        width_img1 = img1.shape[1]
        width_img2 = img2.shape[1]
        width_img3 = img3.shape[1]
        height_panorama = height_img1
        width_panorama = width_img1 +width_img2 +width_img3
        offset = int(self.smoothing_window_size / 2)
        barrier = img1.shape[1] - int(self.smoothing_window_size / 2)
        mask = np.zeros((height_panorama, width_panorama))
        if version== 'left_image':
            mask[:, barrier - offset:barrier + offset ] = np.tile(np.linspace(1, 0, 2 * offset ).T, (height_panorama, 1))
            mask[:, :barrier - offset] = 1
        else:
            mask[:, barrier - offset :barrier + offset ] = np.tile(np.linspace(0, 1, 2 * offset ).T, (height_panorama, 1))
            mask[:, barrier + offset:] = 1
        return cv2.merge([mask, mask, mask])

    def blending(self,img1,img2,img3):
        H = self.registration(img1,img2,img3)
        height_img1 = img1.shape[0]
        width_img1 = img1.shape[1]
        width_img2 = img2.shape[1]
        width_img3 = img3.shape[1]
        height_panorama = height_img1
        width_panorama = width_img1 +width_img2 +width_img3

        panorama1 = np.zeros((height_panorama, width_panorama, 3))
        mask1 = self.create_mask(img1,img2,img3,version='left_image')
        panorama1[0:img1.shape[0], 0:img1.shape[1], :] = img1
        panorama1 *= mask1
        mask2 = self.create_mask(img1,img2,img3,version='right_image')
        panorama2 = cv2.warpPerspective(img2, H, (width_panorama, height_panorama))*mask2

        panorama1 *= mask2
        mask3 = self.create_mask(img1,img2,img3,version='right_image')
        panorama3 = cv2.warpPerspective(img3, H, (width_panorama, height_panorama))*mask3

        result=panorama1+panorama2+panorama3

        rows, cols = np.where(result[:, :, 0] != 0)
        min_row, max_row = min(rows), max(rows) + 1
        min_col, max_col = min(cols), max(cols) + 1
        final_result = result[min_row:max_row, min_col:max_col, :]
        return final_result
def main(argv1,argv2,argv3):
    img1 = cv2.imread(argv1)
    img2 = cv2.imread(argv2)
    img3 = cv2.imread(argv3)

    final=Image_Stitching().blending(img1,img2,img3)
    cv2.imwrite('panorama.jpg', final)
if __name__ == '__main__':
    try: 
        main(sys.argv[1],sys.argv[2],sys.argv[3])
    except IndexError:
        print ("Please input two source images: ")
        print ("For example: python Image_Stitching.py '/Users/linrl3/Desktop/picture/p1.jpg' '/Users/linrl3/Desktop/picture/p2.jpg'")
    

My method is wrong

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant