forked from keras-team/keras
-
Notifications
You must be signed in to change notification settings - Fork 0
/
check_masked_recurrent.py
130 lines (102 loc) · 5.1 KB
/
check_masked_recurrent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
# Dummy test data as input to RNN. This input is 3 timesteps long where the third timestep always matches the
# first. Without masking it should be able to learn it, with masking it should fail.
import numpy as np
from keras.utils.theano_utils import sharedX
from keras.models import Sequential
from keras.layers.core import Dense, Activation, Merge, Dropout, TimeDistributedDense
from keras.layers.embeddings import Embedding
from keras.layers.recurrent import SimpleRNN, SimpleDeepRNN, LSTM, GRU
import theano
theano.config.exception_verbosity = 'high'
# (nb_samples, timesteps, dimensions)
X = np.random.random_integers(1, 4, size=(500000, 15))
print("About to compile the first model")
model = Sequential()
model.add(Embedding(5, 4, mask_zero=True))
model.add(TimeDistributedDense(4, 4)) # obviously this is redundant. Just testing.
model.add(SimpleRNN(4, 4, activation='relu', return_sequences=True))
model.add(Dropout(0.5))
model.add(SimpleDeepRNN(4, 4, depth=2, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(4, 4, activation='softmax'))
model.compile(loss='categorical_crossentropy',
optimizer='rmsprop', theano_mode=theano.compile.mode.FAST_RUN)
print("Compiled model")
W = model.get_weights() # We'll save these so we can reset it later
X[:, : 10] = 0
Xmask0 = X.copy()
Xmask0[:, 10] = 0
Xmask12 = X.copy()
Xmask12[:, 11] = 0
Xmask12[:, 12] = 0
X0_onehot = np.zeros((X.shape[0], 4))
X1_onehot = np.zeros((X.shape[0], 4))
for i, row in enumerate(X):
X0_onehot[i, row[10] - 1] = 1
X1_onehot[i, row[11] - 1] = 1
# Uniform score: 4 options = ln(4) nats (2 bits)
# we should not do better than this when we mask out the part of the input
# that gives us the correct answer
uniform_score = np.log(4)
batch_size=512
# Train it to guess 0th dim
model.fit(X, X0_onehot, nb_epoch=1, batch_size=batch_size)
score = model.evaluate(X, X0_onehot, batch_size=batch_size)
if score > uniform_score * 0.9:
raise Exception('Failed to learn to copy timestep 0, score %f' % score)
model.set_weights(W)
# Train without showing it the 0th dim to learn 1st dim
model.fit(X[: , 1:], X1_onehot, nb_epoch=1, batch_size=batch_size)
score = model.evaluate(X[:, 1:], X1_onehot, batch_size=batch_size)
if score > uniform_score * 0.9:
raise Exception('Failed to learn to copy timestep 1, score %f' % score)
model.set_weights(W)
# Train to guess 0th dim when 0th dim has been masked (should fail)
model.fit(Xmask0, X0_onehot, nb_epoch=1, batch_size=batch_size)
score = model.evaluate(Xmask0, X0_onehot, batch_size=batch_size)
if score < uniform_score * 0.9:
raise Exception('Somehow learned to copy timestep 0 despite mask, score %f' % score)
model.set_weights(W)
# Train to guess 1st dim when 0th dim has been masked (should succeed)
model.fit(Xmask0, X1_onehot, nb_epoch=1, batch_size=batch_size)
score = model.evaluate(Xmask0, X1_onehot, batch_size=batch_size)
if score > uniform_score * 0.9:
raise Exception('Failed to learn to copy timestep 1 in masked model, score %f' % score)
model.set_weights(W)
# Finally, make sure the mask is actually blocking input, mask out timesteps 1 and 2, and see if
# it can learn timestep 0 (should fail)
model.fit(Xmask12, X0_onehot, nb_epoch=1, batch_size=batch_size)
score = model.evaluate(Xmask12, X0_onehot, batch_size=batch_size)
if score < uniform_score * 0.9:
raise Exception('Somehow learned to copy timestep 0 despite masking 1, score %f' % score)
# Another testing approach, just initialize models and make sure that prepending zeros doesn't affect
# their output
print("About to compile the second model")
model2 = Sequential()
model2.add(Embedding(5, 4, mask_zero=True))
model2.add(TimeDistributedDense(4, 4))
model2.add(Activation('time_distributed_softmax'))
model2.add(LSTM(4, 4, return_sequences=True))
model2.add(Activation('tanh'))
model2.add(GRU(4, 4, activation='softmax', return_sequences=True))
model2.add(SimpleDeepRNN(4, 4, depth=2, activation='relu', return_sequences=True))
model2.add(SimpleRNN(4, 4, activation='relu', return_sequences=True))
model2.compile(loss='categorical_crossentropy',
optimizer='rmsprop', theano_mode=theano.compile.mode.FAST_RUN)
print("Compiled model2")
X2 = np.random.random_integers(1, 4, size=(2, 5))
y2 = np.random.random((X2.shape[0], X2.shape[1], 4))
ref = model2.predict(X2)
ref_eval = model2.evaluate(X2, y2)
mask = np.ones((y2.shape[0], y2.shape[1], 1))
for pre_zeros in range(1, 10):
padded_X2 = np.concatenate((np.zeros((X2.shape[0], pre_zeros)), X2), axis=1)
padded_mask = np.concatenate((np.zeros((mask.shape[0], pre_zeros, mask.shape[2])), mask), axis=1)
padded_y2 = np.concatenate((np.zeros((y2.shape[0], pre_zeros, y2.shape[2])), y2), axis=1)
pred = model2.predict(padded_X2)
if not np.allclose(ref[:, -1, :], pred[:, -1, :]):
raise Exception("Different result after left-padding %d zeros. Ref: %s, Pred: %s" % (pre_zeros, ref, pred))
pad_eval = model2.evaluate(padded_X2, padded_y2, weights=padded_mask)
if not np.allclose([pad_eval], [ref_eval]):
raise Exception("Got dissimilar categorical_crossentropy after left-padding %d zeros. Ref: %f, Pred %f" %\
(pref_eval, pred_val))