forked from keras-team/keras
-
Notifications
You must be signed in to change notification settings - Fork 0
/
check_save_weights.py
40 lines (31 loc) · 1.33 KB
/
check_save_weights.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
from keras.models import Sequential
from keras.layers.core import Dense, Dropout, Activation
from keras.optimizers import SGD
import sys
sys.setrecursionlimit(10000) # to be able to pickle Theano compiled functions
import pickle, numpy
def create_model():
model = Sequential()
model.add(Dense(256, 2048, init='uniform', activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(2048, 2048, init='uniform', activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(2048, 2048, init='uniform', activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(2048, 2048, init='uniform', activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(2048, 256, init='uniform', activation='linear'))
return model
model = create_model()
sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True)
model.compile(loss='mse', optimizer=sgd)
pickle.dump(model, open('/tmp/model.pkl', 'wb'))
model.save_weights('/tmp/model_weights.hdf5')
model_loaded = create_model()
model_loaded.load_weights('/tmp/model_weights.hdf5')
for k in range(len(model.layers)):
weights_orig = model.layers[k].get_weights()
weights_loaded = model_loaded.layers[k].get_weights()
for x, y in zip(weights_orig, weights_loaded):
if numpy.any(x != y):
raise ValueError('Loaded weights are different from pickled weights!')