forked from DualCoder/vgpu_unlock
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvgpu_unlock_hooks.c
1230 lines (1054 loc) · 37.3 KB
/
vgpu_unlock_hooks.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
* vGPU unlock hooks.
*
* This file is designed to be included into a single translation unit of the
* vGPU driver's kernel module. It hooks the nv_ioremap_* functions and memcpy
* for that translation unit and applies the vgpu_unlock patch when the magic
* and key values has been accessed by the driver.
*
* Copyright 2021 Jonathan Johansson
* This file is part of the "vgpu_unlock" project, and is distributed under the
* MIT License. See the LICENSE file for more details.
*
* Contributions from Krutav Shah and the vGPU Unlocking community included :)
*
*/
/*------------------------------------------------------------------------------
* Implementation of AES128-ECB.
*------------------------------------------------------------------------------
*/
typedef struct
{
uint8_t round_key[176];
}
vgpu_unlock_aes128_ctx;
typedef uint8_t vgpu_unlock_aes128_state[4][4];
#define Nb 4
#define Nk 4
#define Nr 10
#define getSBoxValue(num) (vgpu_unlock_aes128_sbox[(num)])
#define getSBoxInvert(num) (vgpu_unlock_aes128_rsbox[(num)])
#define Multiply(x, y) \
( ((y & 1) * x) ^ \
((y>>1 & 1) * vgpu_unlock_aes128_xtime(x)) ^ \
((y>>2 & 1) * vgpu_unlock_aes128_xtime(vgpu_unlock_aes128_xtime(x))) ^ \
((y>>3 & 1) * vgpu_unlock_aes128_xtime(vgpu_unlock_aes128_xtime(vgpu_unlock_aes128_xtime(x)))) ^ \
((y>>4 & 1) * vgpu_unlock_aes128_xtime(vgpu_unlock_aes128_xtime(vgpu_unlock_aes128_xtime(vgpu_unlock_aes128_xtime(x)))))) \
static const uint8_t vgpu_unlock_aes128_sbox[256] = {
//0 1 2 3 4 5 6 7 8 9 A B C D E F
0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76,
0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0,
0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15,
0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75,
0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84,
0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf,
0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8,
0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2,
0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73,
0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb,
0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79,
0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08,
0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a,
0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e,
0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf,
0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16 };
static const uint8_t vgpu_unlock_aes128_rsbox[256] = {
0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38, 0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb,
0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87, 0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb,
0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d, 0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e,
0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2, 0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25,
0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92,
0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda, 0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84,
0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a, 0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06,
0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02, 0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b,
0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea, 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73,
0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85, 0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e,
0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89, 0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b,
0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20, 0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4,
0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31, 0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f,
0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d, 0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef,
0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0, 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61,
0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26, 0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d };
static const uint8_t vgpu_unlock_aes128_rcon[11] = {
0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36 };
static void vgpu_unlock_aes128_key_expansion(uint8_t *round_key,
const uint8_t *Key)
{
unsigned i, j, k;
uint8_t tempa[4];
for (i = 0; i < Nk; ++i)
{
round_key[(i * 4) + 0] = Key[(i * 4) + 0];
round_key[(i * 4) + 1] = Key[(i * 4) + 1];
round_key[(i * 4) + 2] = Key[(i * 4) + 2];
round_key[(i * 4) + 3] = Key[(i * 4) + 3];
}
for (i = Nk; i < Nb * (Nr + 1); ++i)
{
k = (i - 1) * 4;
tempa[0] = round_key[k + 0];
tempa[1] = round_key[k + 1];
tempa[2] = round_key[k + 2];
tempa[3] = round_key[k + 3];
if (i % Nk == 0)
{
const uint8_t u8tmp = tempa[0];
tempa[0] = tempa[1];
tempa[1] = tempa[2];
tempa[2] = tempa[3];
tempa[3] = u8tmp;
tempa[0] = getSBoxValue(tempa[0]);
tempa[1] = getSBoxValue(tempa[1]);
tempa[2] = getSBoxValue(tempa[2]);
tempa[3] = getSBoxValue(tempa[3]);
tempa[0] = tempa[0] ^ vgpu_unlock_aes128_rcon[i/Nk];
}
j = i * 4; k=(i - Nk) * 4;
round_key[j + 0] = round_key[k + 0] ^ tempa[0];
round_key[j + 1] = round_key[k + 1] ^ tempa[1];
round_key[j + 2] = round_key[k + 2] ^ tempa[2];
round_key[j + 3] = round_key[k + 3] ^ tempa[3];
}
}
static void vgpu_unlock_aes128_add_round_key(uint8_t round,
vgpu_unlock_aes128_state *state,
const uint8_t *round_key)
{
uint8_t i,j;
for (i = 0; i < 4; ++i)
{
for (j = 0; j < 4; ++j)
{
(*state)[i][j] ^= round_key[(round * Nb * 4) + (i * Nb) + j];
}
}
}
static void vgpu_unlock_aes128_sub_bytes(vgpu_unlock_aes128_state *state)
{
uint8_t i, j;
for (i = 0; i < 4; ++i)
{
for (j = 0; j < 4; ++j)
{
(*state)[j][i] = getSBoxValue((*state)[j][i]);
}
}
}
static void vgpu_unlock_aes128_shift_rows(vgpu_unlock_aes128_state *state)
{
uint8_t temp;
temp = (*state)[0][1];
(*state)[0][1] = (*state)[1][1];
(*state)[1][1] = (*state)[2][1];
(*state)[2][1] = (*state)[3][1];
(*state)[3][1] = temp;
temp = (*state)[0][2];
(*state)[0][2] = (*state)[2][2];
(*state)[2][2] = temp;
temp = (*state)[1][2];
(*state)[1][2] = (*state)[3][2];
(*state)[3][2] = temp;
temp = (*state)[0][3];
(*state)[0][3] = (*state)[3][3];
(*state)[3][3] = (*state)[2][3];
(*state)[2][3] = (*state)[1][3];
(*state)[1][3] = temp;
}
static uint8_t vgpu_unlock_aes128_xtime(uint8_t x)
{
return ((x<<1) ^ (((x>>7) & 1) * 0x1b));
}
static void vgpu_unlock_aes128_mix_columns(vgpu_unlock_aes128_state *state)
{
uint8_t i;
uint8_t tmp, tm, t;
for (i = 0; i < 4; ++i)
{
t = (*state)[i][0];
tmp = (*state)[i][0] ^ (*state)[i][1] ^ (*state)[i][2] ^ (*state)[i][3];
tm = (*state)[i][0] ^ (*state)[i][1];
tm = vgpu_unlock_aes128_xtime(tm); (*state)[i][0] ^= tm ^ tmp;
tm = (*state)[i][1] ^ (*state)[i][2];
tm = vgpu_unlock_aes128_xtime(tm); (*state)[i][1] ^= tm ^ tmp;
tm = (*state)[i][2] ^ (*state)[i][3];
tm = vgpu_unlock_aes128_xtime(tm); (*state)[i][2] ^= tm ^ tmp;
tm = (*state)[i][3] ^ t;
tm = vgpu_unlock_aes128_xtime(tm); (*state)[i][3] ^= tm ^ tmp;
}
}
static void vgpu_unlock_aes128_inv_mix_columns(vgpu_unlock_aes128_state *state)
{
int i;
uint8_t a, b, c, d;
for (i = 0; i < 4; ++i)
{
a = (*state)[i][0];
b = (*state)[i][1];
c = (*state)[i][2];
d = (*state)[i][3];
(*state)[i][0] = Multiply(a, 0x0e) ^ Multiply(b, 0x0b) ^ Multiply(c, 0x0d) ^ Multiply(d, 0x09);
(*state)[i][1] = Multiply(a, 0x09) ^ Multiply(b, 0x0e) ^ Multiply(c, 0x0b) ^ Multiply(d, 0x0d);
(*state)[i][2] = Multiply(a, 0x0d) ^ Multiply(b, 0x09) ^ Multiply(c, 0x0e) ^ Multiply(d, 0x0b);
(*state)[i][3] = Multiply(a, 0x0b) ^ Multiply(b, 0x0d) ^ Multiply(c, 0x09) ^ Multiply(d, 0x0e);
}
}
static void vgpu_unlock_aes128_inv_sub_bytes(vgpu_unlock_aes128_state *state)
{
uint8_t i, j;
for (i = 0; i < 4; ++i)
{
for (j = 0; j < 4; ++j)
{
(*state)[j][i] = getSBoxInvert((*state)[j][i]);
}
}
}
static void vgpu_unlock_aes128_inv_shift_rows(vgpu_unlock_aes128_state *state)
{
uint8_t temp;
temp = (*state)[3][1];
(*state)[3][1] = (*state)[2][1];
(*state)[2][1] = (*state)[1][1];
(*state)[1][1] = (*state)[0][1];
(*state)[0][1] = temp;
temp = (*state)[0][2];
(*state)[0][2] = (*state)[2][2];
(*state)[2][2] = temp;
temp = (*state)[1][2];
(*state)[1][2] = (*state)[3][2];
(*state)[3][2] = temp;
temp = (*state)[0][3];
(*state)[0][3] = (*state)[1][3];
(*state)[1][3] = (*state)[2][3];
(*state)[2][3] = (*state)[3][3];
(*state)[3][3] = temp;
}
static void vgpu_unlock_aes128_cipher(vgpu_unlock_aes128_state *state,
const uint8_t* round_key)
{
uint8_t round = 0;
vgpu_unlock_aes128_add_round_key(0, state, round_key);
for (round = 1; ; ++round)
{
vgpu_unlock_aes128_sub_bytes(state);
vgpu_unlock_aes128_shift_rows(state);
if (round == Nr)
{
break;
}
vgpu_unlock_aes128_mix_columns(state);
vgpu_unlock_aes128_add_round_key(round, state, round_key);
}
vgpu_unlock_aes128_add_round_key(Nr, state, round_key);
}
static void vgpu_unlock_aes128_inv_cipher(vgpu_unlock_aes128_state *state,
const uint8_t* round_key)
{
uint8_t round = 0;
vgpu_unlock_aes128_add_round_key(Nr, state, round_key);
for (round = (Nr - 1); ; --round)
{
vgpu_unlock_aes128_inv_shift_rows(state);
vgpu_unlock_aes128_inv_sub_bytes(state);
vgpu_unlock_aes128_add_round_key(round, state, round_key);
if (round == 0)
{
break;
}
vgpu_unlock_aes128_inv_mix_columns(state);
}
}
static void vgpu_unlock_aes128_init(vgpu_unlock_aes128_ctx *ctx,
const uint8_t *key)
{
vgpu_unlock_aes128_key_expansion(ctx->round_key, key);
}
static void vgpu_unlock_aes128_encrypt(const vgpu_unlock_aes128_ctx *ctx,
uint8_t *buf)
{
vgpu_unlock_aes128_cipher((vgpu_unlock_aes128_state*)buf,
ctx->round_key);
}
static void vgpu_unlock_aes128_decrypt(const vgpu_unlock_aes128_ctx *ctx,
uint8_t* buf)
{
vgpu_unlock_aes128_inv_cipher((vgpu_unlock_aes128_state*)buf,
ctx->round_key);
}
#undef Nb
#undef Nk
#undef Nr
#undef getSBoxValue
#undef getSBoxInvert
#undef Multiply
/*------------------------------------------------------------------------------
* End of AES128-ECB implementation.
*------------------------------------------------------------------------------
*/
/*------------------------------------------------------------------------------
* Implementation of SHA256.
* Original author: Brad Conte (brad AT bradconte.com)
*------------------------------------------------------------------------------
*/
typedef struct {
uint8_t data[64];
uint32_t datalen;
uint64_t bitlen;
uint32_t state[8];
}
vgpu_unlock_sha256_ctx;
#define ROTLEFT(a,b) (((a) << (b)) | ((a) >> (32-(b))))
#define ROTRIGHT(a,b) (((a) >> (b)) | ((a) << (32-(b))))
#define CH(x,y,z) (((x) & (y)) ^ (~(x) & (z)))
#define MAJ(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
#define EP0(x) (ROTRIGHT(x,2) ^ ROTRIGHT(x,13) ^ ROTRIGHT(x,22))
#define EP1(x) (ROTRIGHT(x,6) ^ ROTRIGHT(x,11) ^ ROTRIGHT(x,25))
#define SIG0(x) (ROTRIGHT(x,7) ^ ROTRIGHT(x,18) ^ ((x) >> 3))
#define SIG1(x) (ROTRIGHT(x,17) ^ ROTRIGHT(x,19) ^ ((x) >> 10))
static void vgpu_unlock_sha256_transform(vgpu_unlock_sha256_ctx *ctx,
const uint8_t data[])
{
static const uint32_t k[64] = {
0x428a2f98,0x71374491,0xb5c0fbcf,0xe9b5dba5,0x3956c25b,0x59f111f1,0x923f82a4,0xab1c5ed5,
0xd807aa98,0x12835b01,0x243185be,0x550c7dc3,0x72be5d74,0x80deb1fe,0x9bdc06a7,0xc19bf174,
0xe49b69c1,0xefbe4786,0x0fc19dc6,0x240ca1cc,0x2de92c6f,0x4a7484aa,0x5cb0a9dc,0x76f988da,
0x983e5152,0xa831c66d,0xb00327c8,0xbf597fc7,0xc6e00bf3,0xd5a79147,0x06ca6351,0x14292967,
0x27b70a85,0x2e1b2138,0x4d2c6dfc,0x53380d13,0x650a7354,0x766a0abb,0x81c2c92e,0x92722c85,
0xa2bfe8a1,0xa81a664b,0xc24b8b70,0xc76c51a3,0xd192e819,0xd6990624,0xf40e3585,0x106aa070,
0x19a4c116,0x1e376c08,0x2748774c,0x34b0bcb5,0x391c0cb3,0x4ed8aa4a,0x5b9cca4f,0x682e6ff3,
0x748f82ee,0x78a5636f,0x84c87814,0x8cc70208,0x90befffa,0xa4506ceb,0xbef9a3f7,0xc67178f2
};
uint32_t a, b, c, d, e, f, g, h, i, j, t1, t2, m[64];
for (i = 0, j = 0; i < 16; ++i, j += 4)
m[i] = (data[j] << 24) | (data[j + 1] << 16) | (data[j + 2] << 8) | (data[j + 3]);
for ( ; i < 64; ++i)
m[i] = SIG1(m[i - 2]) + m[i - 7] + SIG0(m[i - 15]) + m[i - 16];
a = ctx->state[0];
b = ctx->state[1];
c = ctx->state[2];
d = ctx->state[3];
e = ctx->state[4];
f = ctx->state[5];
g = ctx->state[6];
h = ctx->state[7];
for (i = 0; i < 64; ++i) {
t1 = h + EP1(e) + CH(e,f,g) + k[i] + m[i];
t2 = EP0(a) + MAJ(a,b,c);
h = g;
g = f;
f = e;
e = d + t1;
d = c;
c = b;
b = a;
a = t1 + t2;
}
ctx->state[0] += a;
ctx->state[1] += b;
ctx->state[2] += c;
ctx->state[3] += d;
ctx->state[4] += e;
ctx->state[5] += f;
ctx->state[6] += g;
ctx->state[7] += h;
}
static void vgpu_unlock_sha256_init(vgpu_unlock_sha256_ctx *ctx)
{
ctx->datalen = 0;
ctx->bitlen = 0;
ctx->state[0] = 0x6a09e667;
ctx->state[1] = 0xbb67ae85;
ctx->state[2] = 0x3c6ef372;
ctx->state[3] = 0xa54ff53a;
ctx->state[4] = 0x510e527f;
ctx->state[5] = 0x9b05688c;
ctx->state[6] = 0x1f83d9ab;
ctx->state[7] = 0x5be0cd19;
}
static void vgpu_unlock_sha256_update(vgpu_unlock_sha256_ctx *ctx,
const uint8_t data[],
size_t len)
{
uint32_t i;
for (i = 0; i < len; ++i) {
ctx->data[ctx->datalen] = data[i];
ctx->datalen++;
if (ctx->datalen == 64) {
vgpu_unlock_sha256_transform(ctx, ctx->data);
ctx->bitlen += 512;
ctx->datalen = 0;
}
}
}
static void vgpu_unlock_sha256_final(vgpu_unlock_sha256_ctx *ctx,
uint8_t hash[])
{
uint32_t i;
i = ctx->datalen;
/* Pad whatever data is left in the buffer. */
if (ctx->datalen < 56) {
ctx->data[i++] = 0x80;
while (i < 56)
ctx->data[i++] = 0x00;
}
else {
ctx->data[i++] = 0x80;
while (i < 64)
ctx->data[i++] = 0x00;
vgpu_unlock_sha256_transform(ctx, ctx->data);
memset(ctx->data, 0, 56);
}
/*
* Append to the padding the total message's length in bits and
* transform.
*/
ctx->bitlen += ctx->datalen * 8;
ctx->data[63] = ctx->bitlen;
ctx->data[62] = ctx->bitlen >> 8;
ctx->data[61] = ctx->bitlen >> 16;
ctx->data[60] = ctx->bitlen >> 24;
ctx->data[59] = ctx->bitlen >> 32;
ctx->data[58] = ctx->bitlen >> 40;
ctx->data[57] = ctx->bitlen >> 48;
ctx->data[56] = ctx->bitlen >> 56;
vgpu_unlock_sha256_transform(ctx, ctx->data);
/*
* Since this implementation uses little endian byte ordering and SHA
* uses big endian, reverse all the bytes when copying the final state
* to the output hash.
*/
for (i = 0; i < 4; ++i) {
hash[i] = (ctx->state[0] >> (24 - i * 8)) & 0x000000ff;
hash[i + 4] = (ctx->state[1] >> (24 - i * 8)) & 0x000000ff;
hash[i + 8] = (ctx->state[2] >> (24 - i * 8)) & 0x000000ff;
hash[i + 12] = (ctx->state[3] >> (24 - i * 8)) & 0x000000ff;
hash[i + 16] = (ctx->state[4] >> (24 - i * 8)) & 0x000000ff;
hash[i + 20] = (ctx->state[5] >> (24 - i * 8)) & 0x000000ff;
hash[i + 24] = (ctx->state[6] >> (24 - i * 8)) & 0x000000ff;
hash[i + 28] = (ctx->state[7] >> (24 - i * 8)) & 0x000000ff;
}
}
#undef ROTLEFT
#undef ROTRIGHT
#undef CH
#undef MAJ
#undef EP0
#undef EP1
#undef SIG0
#undef SIG1
/*------------------------------------------------------------------------------
* End of SHA256 implementation.
*------------------------------------------------------------------------------
*/
/*------------------------------------------------------------------------------
* Implementation of HMAC-SHA256.
*------------------------------------------------------------------------------
*/
static void vgpu_unlock_hmac_sha256(void* dst,
const void *msg,
size_t msg_size,
const void *key,
size_t key_size)
{
vgpu_unlock_sha256_ctx ctx;
uint8_t o_key[96];
uint8_t i_key_pad[64];
uint8_t i;
for (i = 0; i < 64; i++)
{
if (i < key_size)
{
o_key[i] = ((uint8_t*)key)[i] ^ 0x5c;
i_key_pad[i] = ((uint8_t*)key)[i] ^ 0x36;
}
else
{
o_key[i] = 0x5c;
i_key_pad[i] = 0x36;
}
}
vgpu_unlock_sha256_init(&ctx);
vgpu_unlock_sha256_update(&ctx, i_key_pad, sizeof(i_key_pad));
vgpu_unlock_sha256_update(&ctx, msg, msg_size);
vgpu_unlock_sha256_final(&ctx, &o_key[64]);
vgpu_unlock_sha256_init(&ctx);
vgpu_unlock_sha256_update(&ctx, o_key, sizeof(o_key));
vgpu_unlock_sha256_final(&ctx, dst);
}
/*------------------------------------------------------------------------------
* End of HMAC-SHA256 implementation.
*------------------------------------------------------------------------------
*/
/*------------------------------------------------------------------------------
* Implementation of vgpu_unlock hooks.
*------------------------------------------------------------------------------
*/
/* Debug logs can be enabled here. To enable it, change 0 to 1. */
#if 0
#define LOG(...) printk(__VA_ARGS__)
#else
#define LOG(...)
#endif
typedef struct {
uint8_t num_blocks; /* Number of 16 byte blocks up to 'sign'. */
uint8_t name1_len; /* Length of first name (unused?) */
uint8_t name2_len; /* Length of second name (used by VM) */
uint16_t dev_id;
uint16_t vend_id; /* Check skipped if zero. */
uint16_t subsys_id;
uint16_t subsys_vend_id; /* Check skipped if zero. */
char name1_2[38]; /* First and second name, no separation. */
uint8_t sign[0x20];
}
__attribute__((packed))
vgpu_unlock_vgpu_t;
/* Helper macro to initialize the structure above. */
#define VGPU(dev_id, subsys_id, name) \
{ (10 + 2 * strlen(name) + 15) / 16, /* num_blocks */ \
strlen(name), /* name1_len */ \
strlen(name), /* name2_len */ \
(dev_id), /* dev_id */ \
0, /* vend_id */ \
(subsys_id), /* subsys_id */ \
0, /* subsys_vend_id */ \
{ name name } } /* name1_2 */
static vgpu_unlock_vgpu_t vgpu_unlock_vgpu[] =
{
/* Tesla M10 (Maxwell) */
VGPU(0x13bd, 0x11cc, "GRID M10-0B"),
VGPU(0x13bd, 0x11cd, "GRID M10-1B"),
VGPU(0x13bd, 0x1339, "GRID M10-1B4"),
VGPU(0x13bd, 0x1286, "GRID M10-2B"),
VGPU(0x13bd, 0x12ee, "GRID M10-2B4"),
VGPU(0x13bd, 0x11ce, "GRID M10-0Q"),
VGPU(0x13bd, 0x11cf, "GRID M10-1Q"),
VGPU(0x13bd, 0x11d0, "GRID M10-2Q"),
VGPU(0x13bd, 0x11d1, "GRID M10-4Q"),
VGPU(0x13bd, 0x11d2, "GRID M10-8Q"),
VGPU(0x13bd, 0x11d3, "GRID M10-1A"),
VGPU(0x13bd, 0x11d4, "GRID M10-2A"),
VGPU(0x13bd, 0x11d5, "GRID M10-4A"),
VGPU(0x13bd, 0x11d6, "GRID M10-8A"),
/* Tesla M60 (Maxwell 2.0) */
VGPU(0x13f2, 0x114c, "GRID M60-0Q"),
VGPU(0x13f2, 0x114d, "GRID M60-1Q"),
VGPU(0x13f2, 0x114e, "GRID M60-2Q"),
VGPU(0x13f2, 0x114f, "GRID M60-4Q"),
VGPU(0x13f2, 0x1150, "GRID M60-8Q"),
VGPU(0x13f2, 0x1176, "GRID M60-0B"),
VGPU(0x13f2, 0x1177, "GRID M60-1B"),
VGPU(0x13f2, 0x117D, "GRID M60-2B"),
VGPU(0x13f2, 0x1337, "GRID M60-1B4"),
VGPU(0x13f2, 0x12ec, "GRID M60-2B4"),
VGPU(0x13f2, 0x11ae, "GRID M60-1A"),
VGPU(0x13f2, 0x11aF, "GRID M60-2A"),
VGPU(0x13f2, 0x11b0, "GRID M60-4A"),
VGPU(0x13f2, 0x11b1, "GRID M60-8A"),
/* Tesla P4 (Pascal) */
VGPU(0x1bb3, 0x1203, "GRID P4-1B"),
VGPU(0x1bb3, 0x1204, "GRID P4-1Q"),
VGPU(0x1bb3, 0x1205, "GRID P4-2Q"),
VGPU(0x1bb3, 0x1206, "GRID P4-4Q"),
VGPU(0x1bb3, 0x1207, "GRID P4-8Q"),
VGPU(0x1bb3, 0x1208, "GRID P4-1A"),
VGPU(0x1bb3, 0x1209, "GRID P4-2A"),
VGPU(0x1bb3, 0x120a, "GRID P4-4A"),
VGPU(0x1bb3, 0x120b, "GRID P4-8A"),
VGPU(0x1bb3, 0x1288, "GRID P4-2B"),
VGPU(0x1bb3, 0x12f1, "GRID P4-2B4"),
VGPU(0x1bb3, 0x133c, "GRID P4-1B4"),
VGPU(0x1bb3, 0x1380, "GRID P4-8C"),
VGPU(0x1bb3, 0x1385, "GRID P4-4C"),
/* Tesla P40 (Pascal) */
VGPU(0x1b38, 0x11e7, "GRID P40-1B"),
VGPU(0x1b38, 0x11e8, "GRID P40-1Q"),
VGPU(0x1b38, 0x11e9, "GRID P40-2Q"),
VGPU(0x1b38, 0x11ea, "GRID P40-3Q"),
VGPU(0x1b38, 0x11eb, "GRID P40-4Q"),
VGPU(0x1b38, 0x11ec, "GRID P40-6Q"),
VGPU(0x1b38, 0x11ed, "GRID P40-8Q"),
VGPU(0x1b38, 0x11ee, "GRID P40-12Q"),
VGPU(0x1b38, 0x11ef, "GRID P40-24Q"),
VGPU(0x1b38, 0x11f0, "GRID P40-1A"),
VGPU(0x1b38, 0x11f1, "GRID P40-2A"),
VGPU(0x1b38, 0x11f2, "GRID P40-3A"),
VGPU(0x1b38, 0x11f3, "GRID P40-4A"),
VGPU(0x1b38, 0x11f4, "GRID P40-6A"),
VGPU(0x1b38, 0x11f5, "GRID P40-8A"),
VGPU(0x1b38, 0x11f6, "GRID P40-12A"),
VGPU(0x1b38, 0x11f7, "GRID P40-24A"),
VGPU(0x1b38, 0x1287, "GRID P40-2B"),
VGPU(0x1b38, 0x12ef, "GRID P40-2B4"),
VGPU(0x1b38, 0x133a, "GRID P40-1B4"),
VGPU(0x1b38, 0x137e, "GRID P40-24C"),
VGPU(0x1b38, 0x1381, "GRID P40-4C"),
VGPU(0x1b38, 0x1382, "GRID P40-6C"),
VGPU(0x1b38, 0x1383, "GRID P40-8C"),
VGPU(0x1b38, 0x1384, "GRID P40-12C"),
/* Tesla V100 32GB PCIE (Volta) */
VGPU(0x1db6, 0x12bd, "GRID V100D-1B"),
VGPU(0x1db6, 0x12be, "GRID V100D-2B"),
VGPU(0x1db6, 0x12f7, "GRID V100D-2B4"),
VGPU(0x1db6, 0x1342, "GRID V100D-1B4"),
VGPU(0x1db6, 0x12bf, "GRID V100D-1Q"),
VGPU(0x1db6, 0x12c0, "GRID V100D-2Q"),
VGPU(0x1db6, 0x12c1, "GRID V100D-4Q"),
VGPU(0x1db6, 0x12c2, "GRID V100D-8Q"),
VGPU(0x1db6, 0x12c3, "GRID V100D-16Q"),
VGPU(0x1db6, 0x12c4, "GRID V100D-32Q"),
VGPU(0x1db6, 0x12c5, "GRID V100D-1A"),
VGPU(0x1db6, 0x12c6, "GRID V100D-2A"),
VGPU(0x1db6, 0x12c7, "GRID V100D-4A"),
VGPU(0x1db6, 0x12c8, "GRID V100D-8A"),
VGPU(0x1db6, 0x12c9, "GRID V100D-16A"),
VGPU(0x1db6, 0x12ca, "GRID V100D-32A"),
VGPU(0x1db6, 0x1395, "GRID V100D-4C"),
VGPU(0x1db6, 0x1396, "GRID V100D-8C"),
VGPU(0x1db6, 0x1397, "GRID V100D-16C"),
VGPU(0x1db6, 0x1377, "GRID V100D-32C"),
/* Tesla T4 (Turing) */
VGPU(0x1eb8, 0x1309, "GRID T4-1B"),
VGPU(0x1eb8, 0x130a, "GRID T4-2B"),
VGPU(0x1eb8, 0x130b, "GRID T4-2B4"),
VGPU(0x1eb8, 0x130c, "GRID T4-1Q"),
VGPU(0x1eb8, 0x130d, "GRID T4-2Q"),
VGPU(0x1eb8, 0x130e, "GRID T4-4Q"),
VGPU(0x1eb8, 0x130f, "GRID T4-8Q"),
VGPU(0x1eb8, 0x1310, "GRID T4-16Q"),
VGPU(0x1eb8, 0x1311, "GRID T4-1A"),
VGPU(0x1eb8, 0x1312, "GRID T4-2A"),
VGPU(0x1eb8, 0x1313, "GRID T4-4A"),
VGPU(0x1eb8, 0x1314, "GRID T4-8A"),
VGPU(0x1eb8, 0x1315, "GRID T4-16A"),
VGPU(0x1eb8, 0x1345, "GRID T4-1B4"),
VGPU(0x1eb8, 0x1375, "GRID T4-16C"),
VGPU(0x1eb8, 0x139a, "GRID T4-4C"),
VGPU(0x1eb8, 0x139b, "GRID T4-8C"),
/* Quadro RTX 6000 (Turing) */
VGPU(0x1e30, 0x1325, "GRID RTX6000-1Q"),
VGPU(0x1e30, 0x1326, "GRID RTX6000-2Q"),
VGPU(0x1e30, 0x1327, "GRID RTX6000-3Q"),
VGPU(0x1e30, 0x1328, "GRID RTX6000-4Q"),
VGPU(0x1e30, 0x1329, "GRID RTX6000-6Q"),
VGPU(0x1e30, 0x132a, "GRID RTX6000-8Q"),
VGPU(0x1e30, 0x132b, "GRID RTX6000-12Q"),
VGPU(0x1e30, 0x132c, "GRID RTX6000-24Q"),
VGPU(0x1e30, 0x13bf, "GRID RTX6000-4C"),
VGPU(0x1e30, 0x13c0, "GRID RTX6000-6C"),
VGPU(0x1e30, 0x13c1, "GRID RTX6000-8C"),
VGPU(0x1e30, 0x13c2, "GRID RTX6000-12C"),
VGPU(0x1e30, 0x13c3, "GRID RTX6000-24C"),
VGPU(0x1e30, 0x1437, "GRID RTX6000-1B"),
VGPU(0x1e30, 0x1438, "GRID RTX6000-2B"),
VGPU(0x1e30, 0x1439, "GRID RTX6000-1A"),
VGPU(0x1e30, 0x143a, "GRID RTX6000-2A"),
VGPU(0x1e30, 0x143b, "GRID RTX6000-3A"),
VGPU(0x1e30, 0x143c, "GRID RTX6000-4A"),
VGPU(0x1e30, 0x143d, "GRID RTX6000-6A"),
VGPU(0x1e30, 0x143e, "GRID RTX6000-8A"),
VGPU(0x1e30, 0x143f, "GRID RTX6000-12A"),
VGPU(0x1e30, 0x1440, "GRID RTX6000-24A"),
/* RTX A6000 (Ampere) */
VGPU(0x2230, 0x14fa, "NVIDIA RTXA6000-1B"),
VGPU(0x2230, 0x14fb, "NVIDIA RTXA6000-2B"),
VGPU(0x2230, 0x14fc, "NVIDIA RTXA6000-1Q"),
VGPU(0x2230, 0x14fd, "NVIDIA RTXA6000-2Q"),
VGPU(0x2230, 0x14fe, "NVIDIA RTXA6000-3Q"),
VGPU(0x2230, 0x14ff, "NVIDIA RTXA6000-4Q"),
VGPU(0x2230, 0x1500, "NVIDIA RTXA6000-6Q"),
VGPU(0x2230, 0x1501, "NVIDIA RTXA6000-8Q"),
VGPU(0x2230, 0x1502, "NVIDIA RTXA6000-12Q"),
VGPU(0x2230, 0x1503, "NVIDIA RTXA6000-16Q"),
VGPU(0x2230, 0x1504, "NVIDIA RTXA6000-24Q"),
VGPU(0x2230, 0x1505, "NVIDIA RTXA6000-48Q"),
VGPU(0x2230, 0x1506, "NVIDIA RTXA6000-1A"),
VGPU(0x2230, 0x1507, "NVIDIA RTXA6000-2A"),
VGPU(0x2230, 0x1508, "NVIDIA RTXA6000-3A"),
VGPU(0x2230, 0x1509, "NVIDIA RTXA6000-4A"),
VGPU(0x2230, 0x150a, "NVIDIA RTXA6000-6A"),
VGPU(0x2230, 0x150b, "NVIDIA RTXA6000-8A"),
VGPU(0x2230, 0x150c, "NVIDIA RTXA6000-12A"),
VGPU(0x2230, 0x150d, "NVIDIA RTXA6000-16A"),
VGPU(0x2230, 0x150e, "NVIDIA RTXA6000-24A"),
VGPU(0x2230, 0x150f, "NVIDIA RTXA6000-48A"),
VGPU(0x2230, 0x1514, "NVIDIA RTXA6000-4C"),
VGPU(0x2230, 0x1515, "NVIDIA RTXA6000-6C"),
VGPU(0x2230, 0x1516, "NVIDIA RTXA6000-8C"),
VGPU(0x2230, 0x1517, "NVIDIA RTXA6000-12C"),
VGPU(0x2230, 0x1518, "NVIDIA RTXA6000-16C"),
VGPU(0x2230, 0x1519, "NVIDIA RTXA6000-24C"),
VGPU(0x2230, 0x151a, "NVIDIA RTXA6000-48C"),
{ 0 } /* Sentinel */
};
#undef VGPU
static const uint8_t vgpu_unlock_magic_start[0x10] = {
0xf3, 0xf5, 0x9e, 0x3d, 0x13, 0x91, 0x75, 0x18,
0x6a, 0x7b, 0x55, 0xed, 0xce, 0x5d, 0x84, 0x67
};
static const uint8_t vgpu_unlock_magic_sacrifice[0x10] = {
0x46, 0x4f, 0x39, 0x49, 0x74, 0x91, 0xd7, 0x0f,
0xbc, 0x65, 0xc2, 0x70, 0xdd, 0xdd, 0x11, 0x54
};
static bool vgpu_unlock_patch_applied = FALSE;
static bool vgpu_unlock_bar3_mapped = FALSE;
static uint64_t vgpu_unlock_bar3_beg;
static uint64_t vgpu_unlock_bar3_end;
static uint8_t vgpu_unlock_magic[0x10];
static bool vgpu_unlock_magic_found = FALSE;
static uint8_t vgpu_unlock_key[0x10];
static bool vgpu_unlock_key_found = FALSE;
/* These need to be added to the linker script. */
extern uint8_t vgpu_unlock_nv_kern_rodata_beg;
extern uint8_t vgpu_unlock_nv_kern_rodata_end;
static uint16_t vgpu_unlock_pci_devid_to_vgpu_capable(uint16_t pci_devid)
{
switch (pci_devid)
{
/* Maxwell */
case 0x1340 ... 0x13bd:
case 0x174d ... 0x179c:
return 0x13bd; /* Tesla M10 */
/* Maxwell 2.0 */
case 0x13c0 ... 0x1436:
case 0x1617 ... 0x1667: /* GM204 */
case 0x17c2 ... 0x17fd: /* GM200 */
return 0x13f2; /* Tesla M60 */
/* Pascal */
case 0x15f0 ... 0x15f1: /* GP100GL */
case 0x1b00 ... 0x1d56:
case 0x1725 ... 0x172f: /* GP100 */
return 0x1b38; /* Tesla P40 */
/* Volta GV100 */
case 0x1d81: /* Titan V 16GB */
case 0x1dba: /* Quadro GV100 32GB */
return 0x1db6; /* Tesla V100 32GB PCIE */
/* Turing */
case 0x1e02 ... 0x1ff9:
case 0x2182 ... 0x21d1: /* TU116 */
return 0x1e30; /* Quadro RTX 6000 */
/* Ampere */
case 0x2200 ... 0x2600:
return 0x2230; /* RTX A6000 */
}
return pci_devid;
}
/* Our own memcmp that will bypass buffer overflow checks. */
static int vgpu_unlock_memcmp(const void *a, const void *b, size_t size)
{
uint8_t *pa = (uint8_t*)a;
uint8_t *pb = (uint8_t*)b;
while (size--)
{
if (*pa != *pb)
{
return *pa - *pb;
}
pa++;
pb++;
}
return 0;
}
/* Search for a certain pattern in the .rodata section of nv-kern.o_binary. */
static void *vgpu_unlock_find_in_rodata(const void *val, size_t size)
{
uint8_t *i;
for (i = &vgpu_unlock_nv_kern_rodata_beg;
i < &vgpu_unlock_nv_kern_rodata_end - size;
i++)
{
if (vgpu_unlock_memcmp(val, i, size) == 0)
{
return i;
}
}
return NULL;
}
/* Check if a value is within a range. */
static bool vgpu_unlock_in_range(uint64_t val, uint64_t beg, uint64_t end)
{
return (val >= beg) && (val <= end);
}
/* Check if range a is completely contained within range b. */
static bool vgpu_unlock_range_contained_in(uint64_t a_beg,
uint64_t a_end,
uint64_t b_beg,
uint64_t b_end)
{
return vgpu_unlock_in_range(a_beg, b_beg, b_end) &&
vgpu_unlock_in_range(a_end, b_beg, b_end);
}
/* Check if an address points into a specific BAR of an NVIDIA GPU. */
static bool vgpu_unlock_in_bar(uint64_t addr, int bar)
{
struct pci_dev *dev = NULL;
while (1)
{
dev = pci_get_device(0x10de, PCI_ANY_ID, dev);
if (dev)
{
if (vgpu_unlock_in_range(addr,
pci_resource_start(dev, bar),
pci_resource_end(dev, bar)))
{
return TRUE;
}
}
else
{
return FALSE;
}
}
}
/* Check if a potential magic value is valid. */
static bool vgpu_unlock_magic_valid(const uint8_t *magic)
{
void **gpu_list_item;
static void **gpu_list_start = NULL;
if (!gpu_list_start)
{
void *magic_start = vgpu_unlock_find_in_rodata(vgpu_unlock_magic_start,
sizeof(vgpu_unlock_magic_start));
if (!magic_start)
{
LOG(KERN_ERR "Failed to find start of gpu list in .rodata\n");
return NULL;
}
gpu_list_start = (void**)vgpu_unlock_find_in_rodata(&magic_start,
sizeof(magic_start));
if (!gpu_list_start)
{
LOG(KERN_ERR "Failed to find pointer to start of gpu list in .rodata\n");
return NULL;
}
}
for (gpu_list_item = gpu_list_start;
vgpu_unlock_in_range((uint64_t)*gpu_list_item,
(uint64_t)&vgpu_unlock_nv_kern_rodata_beg,
(uint64_t)&vgpu_unlock_nv_kern_rodata_end);
gpu_list_item += 3)
{
if (memcmp(magic, *gpu_list_item, 0x10) == 0)
{
return TRUE;
}
}
return FALSE;
}
static void vgpu_unlock_apply_patch(void)
{
uint8_t i;
void *magic;
void **magic_ptr;
void **blocks_ptr;
void **sign_ptr;
uint8_t sign[0x20];
uint8_t num_blocks;
void *sac_magic;
void **sac_magic_ptr;
void **sac_blocks_ptr;
void **sac_sign_ptr;
vgpu_unlock_aes128_ctx aes_ctx;
vgpu_unlock_vgpu_t* vgpu;
uint8_t first_block[0x10];
uint16_t device_id;
magic = vgpu_unlock_find_in_rodata(vgpu_unlock_magic,
sizeof(vgpu_unlock_magic));
if (!magic)
{
LOG(KERN_ERR "Failed to find magic in .rodata.\n");
goto failed;
}
LOG(KERN_WARNING "Magic is at: %px\n", magic);
magic_ptr = (void**)vgpu_unlock_find_in_rodata(&magic,
sizeof(magic));
if (!magic_ptr)
{
LOG(KERN_ERR "Failed to find pointer to magic in .rodata.\n");
goto failed;
}