forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTHCGeneral.c
752 lines (620 loc) · 22.2 KB
/
THCGeneral.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
#include "THCGeneral.h"
#include "TH.h"
#include "THCTensorRandom.h"
#include "THCBlas.h"
#include "THCAllocator.h"
#include "THCThreadLocal.h"
#include "THCStream.h"
#include <stdlib.h>
#include <stdint.h>
/* Size of scratch space available in global memory per each SM + stream */
#define GLOBAL_SCRATCH_SPACE_PER_SM_STREAM 4 * sizeof(float)
THCCudaResourcesPerDevice* THCState_getDeviceResourcePtr(
THCState *state, int device);
THCState* THCState_alloc(void)
{
THCState* state = (THCState*) malloc(sizeof(THCState));
memset(state, 0, sizeof(THCState));
return state;
}
void THCState_free(THCState* state)
{
free(state);
}
static cudaError_t cudaMallocWrapper(void* ctx, void** devPtr, size_t size, cudaStream_t stream)
{
return cudaMalloc(devPtr, size);
}
static cudaError_t cudaFreeWrapper(void* ctx, void* devPtr)
{
return cudaFree(devPtr);
}
static THCDeviceAllocator defaultDeviceAllocator = {
&cudaMallocWrapper,
NULL,
&cudaFreeWrapper,
NULL,
NULL
};
void THCudaInit(THCState* state)
{
if (!state->cudaDeviceAllocator) {
state->cudaDeviceAllocator = &defaultDeviceAllocator;
}
int numDevices = 0;
THCudaCheck(cudaGetDeviceCount(&numDevices));
state->numDevices = numDevices;
int device = 0;
THCudaCheck(cudaGetDevice(&device));
/* Start in the default stream on the current device */
state->currentStreams = (THCThreadLocal*) malloc(numDevices * sizeof(THCThreadLocal));
for (int i = 0; i < numDevices; ++i) {
state->currentStreams[i] = THCThreadLocal_alloc();
}
state->currentPerDeviceBlasHandle = THCThreadLocal_alloc();
state->resourcesPerDevice = (THCCudaResourcesPerDevice*)
malloc(numDevices * sizeof(THCCudaResourcesPerDevice));
memset(state->resourcesPerDevice, 0, numDevices * sizeof(THCCudaResourcesPerDevice));
state->deviceProperties =
(struct cudaDeviceProp*)malloc(numDevices * sizeof(struct cudaDeviceProp));
state->rngState = (THCRNGState*)malloc(sizeof(THCRNGState));
THCRandom_init(state, numDevices, device);
state->cudaHostAllocator = (THAllocator*)malloc(sizeof(THAllocator));
THCAllocator_init(state);
state->cudaUVAAllocator = (THAllocator*)malloc(sizeof(THAllocator));
THCUVAAllocator_init(state->cudaUVAAllocator);
/* Enable P2P access between all pairs, if possible */
THCudaEnablePeerToPeerAccess(state);
for (int i = 0; i < numDevices; ++i) {
THCCudaResourcesPerDevice* res = THCState_getDeviceResourcePtr(state, i);
THCudaCheck(cudaSetDevice(i));
THCudaCheck(cudaGetDeviceProperties(&state->deviceProperties[i], i));
// Allocate space for the NULL stream
res->streams = (THCStream**) malloc(sizeof(THCStream*));
res->streams[0] = NULL;
/* The scratch space that we want to have available per each device is
based on the number of SMs available per device */
int numSM = state->deviceProperties[i].multiProcessorCount;
size_t sizePerStream = numSM * GLOBAL_SCRATCH_SPACE_PER_SM_STREAM;
res->scratchSpacePerStream = sizePerStream;
/* Allocate scratch space for each stream */
res->devScratchSpacePerStream = (void**) malloc(sizeof(void*));
THCudaCheck(THCudaMalloc(state, &res->devScratchSpacePerStream[0],
sizePerStream));
}
/* Restore to previous device */
THCudaCheck(cudaSetDevice(device));
/* There is no such thing as a default cublas handle.
To maintain consistency with streams API, handle 0 is always NULL and we
start counting at 1. If currentPerDeviceBlasHandle is 0 (the default
thread-local value), then we assume it means 1.
*/
THCState_reserveBlasHandles(state, 1);
state->heapSoftmax = 3e8; // 300MB, adjusted upward dynamically
state->heapDelta = 0;
}
void THCudaShutdown(THCState* state)
{
THCRandom_shutdown(state);
free(state->rngState);
free(state->cudaHostAllocator);
free(state->cudaUVAAllocator);
free(state->deviceProperties);
int deviceCount = 0;
int prevDev = -1;
THCudaCheck(cudaGetDevice(&prevDev));
THCudaCheck(cudaGetDeviceCount(&deviceCount));
/* cleanup p2p access state */
for (int dev = 0; dev < deviceCount; ++dev) {
free(state->p2pAccessEnabled[dev]);
}
free(state->p2pAccessEnabled);
/* cleanup per-device state */
for (int dev = 0; dev < deviceCount; ++dev) {
THCudaCheck(cudaSetDevice(dev));
THCCudaResourcesPerDevice* res = &(state->resourcesPerDevice[dev]);
/* Free user reserved streams (0 is the default stream) */
for (int i = 1; i <= state->numUserStreams; ++i) {
THCStream_free(res->streams[i]);
}
/* Free Torch-defined handles (0 is NULL for consistency with streams API) */
for (int handle = 1; handle <= state->numUserBlasHandles; ++handle) {
THCublasCheck(cublasDestroy(
THCState_getDeviceBlasHandle(state, dev, handle)));
}
/* Free per-stream scratch space; starts at 0 because there is space for
the default stream as well*/
for (int stream = 0; stream <= state->numUserStreams; ++stream) {
THCudaCheck(THCudaFree(state, THCState_getDeviceScratchSpace(state, dev, stream)));
}
free(res->streams);
free(res->blasHandles);
free(res->devScratchSpacePerStream);
THCStream_free((THCStream*)THCThreadLocal_get(state->currentStreams[dev]));
THCThreadLocal_free(state->currentStreams[dev]);
}
free(state->resourcesPerDevice);
if (state->cudaDeviceAllocator->emptyCache) {
state->cudaDeviceAllocator->emptyCache(state->cudaDeviceAllocator->state);
}
free(state->currentStreams);
THCThreadLocal_free(state->currentPerDeviceBlasHandle);
THCudaCheck(cudaSetDevice(prevDev));
}
void THCudaEnablePeerToPeerAccess(THCState* state)
{
/* By default, all direct p2p kernel access (besides copy) is disallowed, */
/* since direct access without knowing whether or not a certain operation */
/* should be cross-GPU leads to synchronization errors. The user can choose */
/* to disable this functionality, however. */
state->p2pKernelAccessEnabled = 0;
int prevDev = -1;
THCudaCheck(cudaGetDevice(&prevDev));
int numDevices = -1;
THCudaCheck(cudaGetDeviceCount(&numDevices));
state->p2pAccessEnabled = (int**) malloc(sizeof(int*) * numDevices);
for (int i = 0; i < numDevices; ++i) {
state->p2pAccessEnabled[i] = (int*) malloc(sizeof(int) * numDevices);
}
/* Build a table of all allowed p2p accesses, to avoid checking the p2p
status at runtime. */
for (int i = 0; i < numDevices; ++i) {
THCudaCheck(cudaSetDevice(i));
for (int j = 0; j < numDevices; ++j) {
/* Presume no access by default */
state->p2pAccessEnabled[i][j] = 0;
if (i == j) {
/* A GPU can access itself */
state->p2pAccessEnabled[i][j] = 1;
} else {
int access = 0;
THCudaCheck(cudaDeviceCanAccessPeer(&access, i, j));
if (access) {
cudaError_t err = cudaDeviceEnablePeerAccess(j, 0);
if (err == cudaErrorPeerAccessAlreadyEnabled) {
/* It is possible that another thread has already enabled access. */
/* Any future call to cudaGetLastError will now return an error, */
/* even though we've already dealt with this specific error here. */
/* Call cudaGetLastError once to reset the last error state. */
cudaGetLastError();
/* The above should have cleared status */
THCudaCheck(cudaGetLastError());
} else {
/* In case there are other unhandled errors returned from the */
/* above */
THCudaCheck(err);
}
/* Access could be enabled, or was already enabled */
state->p2pAccessEnabled[i][j] = 1;
}
}
}
}
/* Restore previous device before continuing */
THCudaCheck(cudaSetDevice(prevDev));
}
int THCState_getPeerToPeerAccess(THCState* state, int dev, int devToAccess)
{
if (dev < 0 || dev >= state->numDevices) {
THError("%d is not a device", dev);
}
if (devToAccess < 0 || dev >= state->numDevices) {
THError("%d is not a device", devToAccess);
}
return state->p2pAccessEnabled[dev][devToAccess];
}
void THCState_setPeerToPeerAccess(THCState* state, int dev, int devToAccess,
int enable)
{
/* This will perform device bounds checking for us */
int prevEnabled = THCState_getPeerToPeerAccess(state, dev, devToAccess);
if (enable != prevEnabled) {
/* If we're attempting to enable p2p access but p2p access isn't */
/* supported, throw an error */
if (enable) {
int access = 0;
THCudaCheck(cudaDeviceCanAccessPeer(&access, dev, devToAccess));
if (!access) {
THError("p2p access not supported for %d accessing %d",
dev, devToAccess);
}
}
state->p2pAccessEnabled[dev][devToAccess] = enable;
int prevDev = 0;
THCudaCheck(cudaGetDevice(&prevDev));
THCudaCheck(cudaSetDevice(dev));
/* This should be in sync with the current access state */
if (enable) {
THCudaCheck(cudaDeviceEnablePeerAccess(devToAccess, 0));
} else {
THCudaCheck(cudaDeviceDisablePeerAccess(devToAccess));
}
THCudaCheck(cudaSetDevice(prevDev));
}
}
int THCState_getKernelPeerToPeerAccessEnabled(THCState* state) {
return state->p2pKernelAccessEnabled;
}
void THCState_setKernelPeerToPeerAccessEnabled(THCState* state, int val) {
state->p2pKernelAccessEnabled = val;
}
struct cudaDeviceProp* THCState_getCurrentDeviceProperties(THCState* state)
{
int curDev = -1;
THCudaCheck(cudaGetDevice(&curDev));
return &(state->deviceProperties[curDev]);
}
struct THCRNGState* THCState_getRngState(THCState *state)
{
return state->rngState;
}
THAllocator* THCState_getCudaHostAllocator(THCState* state)
{
return state->cudaHostAllocator;
}
THAllocator* THCState_getCudaUVAAllocator(THCState* state)
{
return state->cudaUVAAllocator;
}
void THCState_setDeviceAllocator(THCState* state, THCDeviceAllocator* allocator)
{
state->cudaDeviceAllocator = allocator;
}
int THCState_getNumDevices(THCState *state)
{
return state->numDevices;
}
void THCState_reserveStreams(THCState* state, int numStreams, int nonBlocking)
{
if (numStreams <= state->numUserStreams)
{
return;
}
int prevDev = -1;
THCudaCheck(cudaGetDevice(&prevDev));
/* Otherwise, we have to allocate a new set of streams and stream data */
for (int dev = 0; dev < state->numDevices; ++dev) {
THCudaCheck(cudaSetDevice(dev));
THCCudaResourcesPerDevice* res = THCState_getDeviceResourcePtr(state, dev);
/* +1 for the default stream as well */
THCStream** newStreams = realloc(res->streams, (numStreams + 1) * sizeof(THCStream*));
THAssert(newStreams);
void** newScratchSpace = realloc(res->devScratchSpacePerStream, (numStreams + 1) * sizeof(void*));
THAssert(newScratchSpace);
/* Allocate new stream resources */
size_t scratchSpaceSize = THCState_getDeviceScratchSpaceSize(state, dev);
unsigned int flags =
nonBlocking ? cudaStreamNonBlocking : cudaStreamDefault;
for (int stream = state->numUserStreams + 1; stream <= numStreams; ++stream) {
newStreams[stream] = THCStream_new(flags);
newScratchSpace[stream] = NULL;
THCudaCheck(THCudaMalloc(state, &newScratchSpace[stream], scratchSpaceSize));
}
res->streams = newStreams;
res->devScratchSpacePerStream = newScratchSpace;
}
state->numUserStreams = numStreams;
THCudaCheck(cudaSetDevice(prevDev));
}
void THCState_reserveBlasHandles(THCState* state, int numBlasHandles)
{
if (numBlasHandles <= state->numUserBlasHandles)
{
return;
}
int prevDev = -1;
THCudaCheck(cudaGetDevice(&prevDev));
/* Otherwise, we have to allocate a new set of blasHandles */
for (int dev = 0; dev < state->numDevices; ++dev) {
THCudaCheck(cudaSetDevice(dev));
/* +1 to be consistent with stream API, blas handle 0 is NULL and unused */
cublasHandle_t* newBlasHandles =
(cublasHandle_t*) malloc((numBlasHandles + 1) * sizeof(cublasHandle_t));
/* Copy over old blasHandles
(0 is NULL, 1 ... numUserBlasHandles are rest) */
newBlasHandles[0] = NULL;
for (int hndl = 1; hndl <= state->numUserBlasHandles; ++hndl) {
newBlasHandles[hndl] = THCState_getDeviceBlasHandle(state, dev, hndl);
}
/* Allocate new handles */
for (int hndl = state->numUserBlasHandles + 1; hndl <= numBlasHandles; ++hndl) {
newBlasHandles[hndl] = NULL;
THCublasCheck(cublasCreate(newBlasHandles + hndl));
}
THCCudaResourcesPerDevice* res = THCState_getDeviceResourcePtr(state, dev);
free(res->blasHandles);
res->blasHandles = newBlasHandles;
}
state->numUserBlasHandles = numBlasHandles;
THCudaCheck(cudaSetDevice(prevDev));
}
int THCState_getNumStreams(THCState* state)
{
return state->numUserStreams;
}
int THCState_getNumBlasHandles(THCState* state)
{
return state->numUserBlasHandles;
}
THCCudaResourcesPerDevice* THCState_getDeviceResourcePtr(
THCState *state, int device)
{
/* `device` is a CUDA index */
if (device >= state->numDevices || device < 0)
{
THError("%d is not a device", device + 1 /* back to Torch index */);
}
return &(state->resourcesPerDevice[device]);
}
cudaStream_t THCState_getDeviceStream(THCState *state, int device, int streamIndex)
{
if (streamIndex > state->numUserStreams || streamIndex < 0)
{
THError("%d is not a stream", streamIndex);
}
THCCudaResourcesPerDevice* res = THCState_getDeviceResourcePtr(state, device);
THCStream* stream = res->streams[streamIndex];
return stream ? stream->stream : NULL;
}
cublasHandle_t THCState_getDeviceBlasHandle(THCState *state, int device, int handle)
{
if (handle <= 0 || handle > state->numUserBlasHandles)
{
THError("%d is not a valid handle, valid range is: (1, %d)",
handle, state->numUserBlasHandles);
}
return THCState_getDeviceResourcePtr(state, device)->blasHandles[handle];
}
static THCStream* THCState_getStreamOnDevice(THCState* state, int device)
{
return (THCStream*) THCThreadLocal_get(state->currentStreams[device]);
}
static void THCState_setStreamOnDevice(THCState *state, int device, THCStream *stream)
{
if (stream) {
if (stream->device != device) {
THError("invalid stream; expected stream for device %d, but was on %d",
device, stream->device);
}
THCStream_retain(stream);
}
THCThreadLocal local = state->currentStreams[device];
THCStream_free((THCStream*)THCThreadLocal_get(local));
THCThreadLocal_set(local, stream);
}
cudaStream_t THCState_getCurrentStreamOnDevice(THCState *state, int device)
{
THCStream* stream = THCState_getStreamOnDevice(state, device);
return stream ? stream->stream : NULL;
}
cudaStream_t THCState_getCurrentStream(THCState *state)
{
/* This is called at the point of kernel execution.
For some debugging code or improperly instrumented kernels,
`state` is null */
if (state) {
int device;
THCudaCheck(cudaGetDevice(&device));
return THCState_getCurrentStreamOnDevice(state, device);
} else {
/* assume default stream */
return NULL;
}
}
cublasHandle_t THCState_getCurrentBlasHandle(THCState *state)
{
/* This is called at the point of kernel execution.
For some debugging code or improperly instrumented kernels,
`state` is null */
if (state) {
int device;
THCudaCheck(cudaGetDevice(&device));
int handle = THCState_getCurrentBlasHandleIndex(state);
return THCState_getDeviceBlasHandle(state, device, handle);
}
THError("THCState and blasHandles must be set as there is no default blasHandle");
return NULL;
}
int THCState_getCurrentStreamIndex(THCState *state)
{
THCStream* stream = THCState_getStream(state);
if (!stream) {
return 0;
}
int device;
THCudaCheck(cudaGetDevice(&device));
THCCudaResourcesPerDevice* res = THCState_getDeviceResourcePtr(state, device);
for (int i = 0; i <= state->numUserStreams; ++i) {
if (res->streams[i] == stream) {
return i;
}
}
return -1;
}
int THCState_getCurrentBlasHandleIndex(THCState *state)
{
void* value = THCThreadLocal_get(state->currentPerDeviceBlasHandle);
if (value == NULL) {
return 1;
}
return (int) (intptr_t) value;
}
THCStream* THCState_getStream(THCState *state)
{
int device;
THCudaCheck(cudaGetDevice(&device));
return THCState_getStreamOnDevice(state, device);
}
void THCState_setStream(THCState *state, THCStream *stream)
{
int device;
THCudaCheck(cudaGetDevice(&device));
THCState_setStreamOnDevice(state, device, stream);
}
void THCState_setCurrentStreamIndex(THCState *state, int streamIndex)
{
if (streamIndex < 0 || streamIndex > state->numUserStreams) {
THError("%d is not a valid stream, valid range is: (0, %d)", streamIndex,
state->numUserStreams);
}
int device;
for (device = 0; device < state->numDevices; ++device) {
THCStream* stream = NULL;
if (streamIndex != 0) {
THCCudaResourcesPerDevice* res = THCState_getDeviceResourcePtr(state, device);
stream = res->streams[streamIndex];
}
THCState_setStreamOnDevice(state, device, stream);
}
}
void THCState_setCurrentBlasHandleIndex(THCState *state, int handle)
{
if (handle > state->numUserBlasHandles || handle <= 0)
{
THError("%d is not a valid handle, valid range is: (1, %d)",
handle, state->numUserBlasHandles);
}
THCThreadLocal_set(state->currentPerDeviceBlasHandle, (void*)(intptr_t)handle);
}
void* THCState_getCurrentDeviceScratchSpace(THCState* state)
{
int device = -1;
THCudaCheck(cudaGetDevice(&device));
int stream = THCState_getCurrentStreamIndex(state);
if (stream < 0) {
// new stream API
return NULL;
}
return THCState_getDeviceScratchSpace(state, device, stream);
}
void* THCState_getDeviceScratchSpace(THCState* state, int device, int stream)
{
THCCudaResourcesPerDevice* res =
THCState_getDeviceResourcePtr(state, device);
if (stream > state->numUserStreams || stream < 0)
{
THError("%d is not a stream", stream);
}
return res->devScratchSpacePerStream[stream];
}
size_t THCState_getCurrentDeviceScratchSpaceSize(THCState* state)
{
int device = -1;
THCudaCheck(cudaGetDevice(&device));
return THCState_getDeviceScratchSpaceSize(state, device);
}
size_t THCState_getDeviceScratchSpaceSize(THCState* state, int device)
{
THCCudaResourcesPerDevice* res =
THCState_getDeviceResourcePtr(state, device);
return res->scratchSpacePerStream;
}
void __THCudaCheck(cudaError_t err, const char *file, const int line)
{
if(err != cudaSuccess)
{
static int alreadyFailed = 0;
if(!alreadyFailed) {
fprintf(stderr, "THCudaCheck FAIL file=%s line=%i error=%i : %s\n", file, line, err, cudaGetErrorString(err));
alreadyFailed = 1;
}
_THError(file, line, "cuda runtime error (%d) : %s", err,
cudaGetErrorString(err));
}
}
void __THCublasCheck(cublasStatus_t status, const char *file, const int line)
{
if(status != CUBLAS_STATUS_SUCCESS)
{
const char* errmsg = NULL;
switch(status)
{
case CUBLAS_STATUS_NOT_INITIALIZED:
errmsg = "library not initialized";
break;
case CUBLAS_STATUS_ALLOC_FAILED:
errmsg = "resource allocation failed";
break;
case CUBLAS_STATUS_INVALID_VALUE:
errmsg = "an invalid numeric value was used as an argument";
break;
case CUBLAS_STATUS_ARCH_MISMATCH:
errmsg = "an absent device architectural feature is required";
break;
case CUBLAS_STATUS_MAPPING_ERROR:
errmsg = "an access to GPU memory space failed";
break;
case CUBLAS_STATUS_EXECUTION_FAILED:
errmsg = "the GPU program failed to execute";
break;
case CUBLAS_STATUS_INTERNAL_ERROR:
errmsg = "an internal operation failed";
break;
default:
errmsg = "unknown error";
break;
}
_THError(file, line, "cublas runtime error : %s", errmsg);
}
}
static ptrdiff_t heapSize = 0; // not thread-local
static const ptrdiff_t heapMaxDelta = (ptrdiff_t)1e6;
static const ptrdiff_t heapMinDelta = (ptrdiff_t)-1e6;
static const double heapSoftmaxGrowthThresh = 0.8; // grow softmax if >80% max after GC
static const double heapSoftmaxGrowthFactor = 1.4; // grow softmax by 40%
void THCSetGCHandler(THCState *state, void (*cutorchGCFunction_)(void *data), void *data )
{
state->cutorchGCFunction = cutorchGCFunction_;
state->cutorchGCData = data;
}
cudaError_t THCudaMalloc(THCState *state, void** ptr, size_t size)
{
THCudaCheck(cudaGetLastError());
cudaStream_t stream = THCState_getCurrentStream(state);
THCDeviceAllocator* allocator = state->cudaDeviceAllocator;
cudaError_t err = allocator->malloc(allocator->state, ptr, size, stream);
if (state->cutorchGCFunction != NULL && err != cudaSuccess) {
cudaGetLastError(); // reset OOM error
(state->cutorchGCFunction)(state->cutorchGCData);
err = allocator->malloc(allocator->state, ptr, size, stream);
}
return err;
}
cudaError_t THCudaFree(THCState *state, void *ptr)
{
THCDeviceAllocator* allocator = state->cudaDeviceAllocator;
return allocator->free(allocator->state, ptr);
}
static ptrdiff_t applyHeapDelta(THCState *state) {
ptrdiff_t newHeapSize = THAtomicAddPtrdiff(&heapSize, state->heapDelta) + state->heapDelta;
state->heapDelta = 0;
return newHeapSize;
}
// Here we maintain a dynamic softmax threshold for THC-allocated storages.
// When THC heap size goes above this softmax, the GC hook is triggered.
// If heap size is above 80% of the softmax after GC, then the softmax is
// increased.
static void maybeTriggerGC(THCState *state, ptrdiff_t curHeapSize) {
if (state->cutorchGCFunction != NULL && curHeapSize > state->heapSoftmax) {
(state->cutorchGCFunction)(state->cutorchGCData);
// ensure heapSize is accurate before updating heapSoftmax
ptrdiff_t newHeapSize = applyHeapDelta(state);
if (newHeapSize > state->heapSoftmax * heapSoftmaxGrowthThresh) {
state->heapSoftmax = (ptrdiff_t)state->heapSoftmax * heapSoftmaxGrowthFactor;
}
}
}
void THCHeapUpdate(THCState *state, ptrdiff_t size) {
state->heapDelta += size;
// batch updates to global heapSize to minimize thread contention
if (state->heapDelta < heapMaxDelta && state->heapDelta > heapMinDelta) {
return;
}
ptrdiff_t newHeapSize = applyHeapDelta(state);
if (size > 0) {
maybeTriggerGC(state, newHeapSize);
}
}
#undef GLOBAL_SCRATCH_SPACE_PER_SM_STREAM
#include "THCStorage.c"
#include "THCAllocator.c"