forked from flyywh/rain-rendering
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbad_weather.py
918 lines (741 loc) · 37.6 KB
/
bad_weather.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
import hashlib
import os
import sys
import traceback
from enum import Enum
from xml.etree.ElementTree import parse
import cv2
import matplotlib.pyplot as plt
import numpy as np
import pyclipper
from scipy.ndimage.filters import gaussian_filter
from common import my_utils, db
plt.ion()
try:
import cPickle as pickle
except Exception:
import pickle
'''
###########################################
# IMPORTANT #
###########################################
- The positive direction of the Z-Axis is being reversed in our code as compared to the one in simulation file
- The positive direction of the Y-Axis is being reversed in our code as compared to the KITTI dataset
## Conventions (comments about papers)
# vr - Vision and Rain (Garg & Nayar 2007)
# pr - Photorealistic Rendering of Rain Streaks (Garg & Nayar 2006)
'''
cache = {}
class DropType(Enum):
Big = 0
Medium = 1
Small = 2
class Streak:
def __init__(self, ):
self.pid = None
self.world_position_start = None
self.world_position_end = None
self.world_diameter_start = None
self.world_diameter_end = None
self.image_position_start = None
self.image_position_end = None
self.image_diameter_start = None
self.image_diameter_end = None
self.ratio = None
self.max_width = None
self.length = None
self.drop_type = None
def __repr__(self):
return str(self.__dict__).replace(',', '\n')
class Frame:
def __init__(self, ):
self.id = None
self.starting_time = None
self.exposure_time = None
self.streaks_count = None
self.streaks = None
def __repr__(self):
return str(self.__dict__).replace(',', '\n')
class DBManager:
def __init__(self, streaks_path=None, streaks_path_xml=None, norm_coeff_path=None):
'''
Function to initialize the class.
:param streaks_path: Path to the light texture database.
:param streaks_path_xml: Path to the output of the simulator.
:param norm_coeff_path: TODO:: FILL
'''
self.streaks_path = streaks_path
self.streaks_path_xml = streaks_path_xml
self.streaks_light = np.array([])
self.norm_coeff_path = norm_coeff_path
self.streaks_simulator = {}
self.ratio = np.array([])
def __repr__(self):
return "DataAcquisition()"
def __str__(self):
return 'DataAcquisition'.format()
@staticmethod
def classify_drop(w):
if w >= 4:
return DropType(0)
if w > 1:
return DropType(1)
return DropType(2)
def load_streak_database(self):
'''
Function to load and store the texture maps.
Streaks are stored in a list.
'''
if not os.path.exists(self.streaks_path):
print("No existing path for streak database (", self.streaks_path, ")")
exit(-1)
tmp = []
norm_coeff_path = self.norm_coeff_path
norm_coeffs = {}
with open(norm_coeff_path, 'r') as file:
lines = file.readlines()
for line in lines:
if line[:2] == 'cv':
coeff = int(line[2:])
continue
norm_coeffs.update({coeff: [float(v) for v in line.split('\n')[0].split(' ')[:-1]]})
for file_name in my_utils.os_listdir(self.streaks_path):
name = os.path.splitext(file_name)[0]
coeff, osc = name.split('_')
if len(coeff) == 3:
coeff = int(coeff[-1:])
else:
coeff = int(coeff[-2:])
osc = int(osc[-1:])
drop_image = cv2.imread(os.path.join(self.streaks_path, file_name), cv2.IMREAD_ANYDEPTH)
drop_image = cv2.cvtColor(drop_image, cv2.COLOR_GRAY2BGR)
drop_image_norm = ((255.0 * norm_coeffs[coeff][osc] * drop_image) / 65535.0).astype(np.uint8)
tmp.append(drop_image_norm)
self.ratio = np.append(self.ratio, tmp[-1].shape[1] / tmp[-1].shape[0])
self.ratio = np.unique(self.ratio)
self.streaks_light = np.array(tmp)
def load_streaks_from_xml(self, dataset, settings, image_shape_WH, use_pickle=True, verbose=True):
'''
Function to load and store the output from the physical simulator.
Streak data is stored in a dictionary. Key: ID, Value: data
'''
print('Reading particles file {}'.format(self.streaks_path_xml))
pickle_version = '1.0'
# Compute the simulation file hash
hasher = hashlib.md5()
with open(self.streaks_path_xml, 'rb') as afile:
buf = afile.read()
hasher.update(buf)
sim_hash = hasher.hexdigest()
pickle_path = self.streaks_path_xml + '.pkl'
if use_pickle and os.path.exists(pickle_path):
print(' loading from pickle')
input = open(pickle_path, 'rb')
pickle_data = pickle.load(input)
# If sim_hash did not change, and image shape is identical too
if 'version' in pickle_data and pickle_data['version'] == pickle_version and pickle_data[
'sim_hash'] == sim_hash and np.all(pickle_data['image_shapeWH'] == image_shape_WH):
self.streaks_simulator = pickle_data['streaks']
input.close()
return
else:
print('Pickle out-dated. Regenerate.')
input.close()
if not os.path.exists(self.streaks_path_xml):
my_utils.print_error("No existing path for XML file (" + self.streaks_path_xml + ")")
exit(-1)
try:
simulation = parse(self.streaks_path_xml).getroot()
except Exception as e:
raise Exception("Reading XML file {} crashed, which is likely due to corrupted particles simulation files. If so, delete this simulation folder manually and re-run to allow generation of new simulation.".format(self.streaks_path_xml))
if verbose:
my_utils.print_progress_bar(0, len(simulation))
try:
for fix, frame in enumerate(simulation):
f = Frame()
f.id = int(frame.attrib['id'])
f.exposure_time = int(frame.attrib['t'])
f.starting_time = int(frame.attrib['d'])
f.streaks_count = int(frame.attrib['rs'])
f.streaks = {}
for drop in frame:
s = Streak()
s.pid = int(drop.attrib["pid"])
s.world_position_start = np.array(drop.attrib["wp1"][1:-1].split(';'), dtype=float)
s.world_position_end = np.array(drop.attrib["wp2"][1:-1].split(';'), dtype=float)
s.world_diameter_start = float(drop.attrib['wd1'])
s.world_diameter_end = float(drop.attrib['wd2'])
s.image_position_start = np.array(drop.attrib["ip1"][1:-1].split(';'), dtype=float) / settings["render_scale"] # x,y
s.image_position_end = np.array(drop.attrib["ip2"][1:-1].split(';'), dtype=float) / settings["render_scale"] # x,y
s.image_diameter_start = float(drop.attrib['iw1']) / settings["render_scale"]
s.image_diameter_end = float(drop.attrib['iw2']) / settings["render_scale"]
if dataset == 'nuscenes_gan':
# in case the simulation and the rendering are not at the same resolution
r = np.mean((image_shape_WH[0] / 1600, image_shape_WH[1] / 900))
s.image_position_start = np.array(drop.attrib["ip1"][1:-1].split(';'), dtype=float) * r # x,y
s.image_position_end = np.array(drop.attrib["ip2"][1:-1].split(';'), dtype=float) * r # x,y
s.image_diameter_start = float(drop.attrib['iw1']) * r
s.image_diameter_end = float(drop.attrib['iw2']) * r
s.image_position_start[1] = image_shape_WH[1] - s.image_position_start[1]
s.image_position_end[1] = image_shape_WH[1] - s.image_position_end[1]
s.world_position_start[2] *= -1
s.world_position_end[2] *= -1
diff = abs(s.image_position_start - s.image_position_end)
s.max_width = int(max(s.image_diameter_start, s.image_diameter_end))
dir1 = np.array([0, -1])
dir2 = diff / np.linalg.norm(diff)
dir2[1] = -dir2[1]
cos_theta = np.dot(dir1, dir2)
actual_length = diff[1] / cos_theta
s.ratio = s.max_width / actual_length
s.image_position_end = s.image_position_end.round().astype(int)
s.image_position_start = s.image_position_start.round().astype(int)
s.length = np.ceil(np.linalg.norm(s.image_position_start - s.image_position_end)).astype(int)
s.drop_type = self.classify_drop(s.max_width)
if s.max_width >= 1 and s.length >= 1:
f.streaks.update({s.pid: s})
self.streaks_simulator.update({f.id: f})
if verbose:
my_utils.print_progress_bar(fix + 1, len(simulation))
except Exception as e:
ex_type, ex, tb = sys.exc_info()
my_utils.print_error('Error while parsing XML file.\n\tFile: ' + self.streaks_path_xml)
traceback.print_tb(tb)
exit(-1)
def take_drop_texture(self, drop):
if drop.ratio < self.ratio[0]:
drop = self.streaks_light[np.random.randint(0, 10)] / 255.0
return drop
if drop.ratio < self.ratio[1]:
drop = self.streaks_light[np.random.randint(10, 20)] / 255.0
return drop
if drop.ratio < self.ratio[2]:
drop = self.streaks_light[np.random.randint(20, 30)] / 255.0
return drop
if drop.ratio < self.ratio[3]:
drop = self.streaks_light[np.random.randint(30, 40)] / 255.0
return drop
else:
drop = self.streaks_light[np.random.randint(40, 50)] / 255.0
return drop
@staticmethod
def normalize(v):
return v / np.linalg.norm(v)
class RainRenderer:
def __init__(self, focal, f_number, focus_plane, radius, fov):
self.f = focal
self.N = f_number
self.focus_plane = focus_plane
self.radius = radius
self.fov = fov
def __repr__(self):
return "RainRenderer()"
def __str__(self):
return 'RainRenderer'.format()
def circle_of_confusion(self, drop, drop_distance, drop_dict):
# TODO:: Assess this chunk of code
# Out-of-focus blur produces larger drop. Thus, we first copy drop in a bigger array and later apply gaussian blur.
c = abs(self.compute_circle(abs(drop_distance)))
sigma1, sigma2 = c, c / 2
# sigma1,sigma2 = (drop_dict.maxWidth/2,drop_dict.maxWidth/2) if drop_dict.dropType==DropType.Big else (drop_dict.maxWidth/3,drop_dict.maxWidth/3)
shift = int(10 * c) # TODO: We consider a 10 margin increase, reasonable for most ouf-of-focus blur
drop2 = cv2.copyMakeBorder(drop, shift, shift, shift, shift, cv2.BORDER_CONSTANT, value=(0, 0, 0, 0))
drop2 = gaussian_filter(drop2, [sigma1, sigma2, 0])
return drop2, shift
@staticmethod
def warping_points(drop, drop_texture, image_width, image_height):
x0 = round(drop.image_position_start[0])
x1 = round(drop.image_position_end[0])
y0 = round(drop.image_position_start[1])
y1 = round(drop.image_position_end[1])
d0 = np.floor(drop.image_diameter_start)
d1 = np.floor(drop.image_diameter_end)
minx = max(min(x0, x1), 0)
miny = max(min(y0, y1), 0)
maxx = min(max(x0 + d0, x1 + d1), image_width)
maxy = min(max(y0, y1), image_height)
# to prevent singularity of pers matrix
epsilon = 0.001
p1 = np.float32([
[0, 0],
[drop_texture.shape[1], 0],
[drop_texture.shape[1], drop_texture.shape[0]],
[0, drop_texture.shape[0]]])
p2 = np.float32([
[x0 - minx, y0 - miny],
[x0 - minx + d0, y0 - miny],
[x1 - minx + d1 + epsilon, y1 - miny],
[x1 - minx + epsilon, y1 - miny]])
return p1, p2, np.array([maxx, maxy]), np.array([minx, miny])
@staticmethod
def colour_drop(drop):
drop[..., :3] = drop[..., :3] * np.expand_dims(drop[..., 3] / 255, axis=-1)
return drop
def add_drop_to_image(self, dataset, env_map_xyY, solid_angle_map, drop_fov_pts, drop_minC, bg, rainy_bg,
rainy_mask, rainy_saturation_mask, drop, drop_dict, irrad_type, rendering_strategy,
opacity_attenuation=1.0):
global cache
# This part can be optimized using matplotlib
# https://stackoverflow.com/questions/36399381/whats-the-fastest-way-of-checking-if-a-point-is-inside-a-polygon-in-python
# TODO - cases where smaller drops may be darker than completely occluding large drops
exposure_time = db.settings(dataset)["cam_exposure"] / 1000.
drop_size = 1.16 * 1e-3 # Photorealistic Rendering of Rain Streaks (section 4)
# Compute the intersection between the FOV points of the drop and the environment map
# Will return the mask of the drop in the env map
if rendering_strategy in ['white']:
# Compute the rain blending
tau_zero = np.sqrt(drop_size) / 50 # correct vr appendix (10.2) sec
length_opacity = 1.
tau_one = exposure_time * length_opacity # correct #logically
elif rendering_strategy in ['naive_db']:
d_avg = (drop_dict.imageDiameterStart + drop_dict.imageDiameterStart) / 2.
# Compute the rain blending
tau_zero = np.sqrt(drop_size) / 50 # correct vr appendix (10.2) sec
length_opacity = d_avg / (drop_dict.length + d_avg) # doubtful #pr Pg 5 camera effects
tau_one = exposure_time * length_opacity # correct #logically
else:
# Note: This could perhaps be optimize
clip = tuple(drop_fov_pts)
rows, cols = env_map_xyY.shape[:2]
subj = ((0, 0), (cols, 0), (cols, rows), (0, rows))
pc = pyclipper.Pyclipper()
pc.AddPath(clip, pyclipper.PT_CLIP, True)
pc.AddPath(subj, pyclipper.PT_SUBJECT, True)
solution = pc.Execute(pyclipper.CT_INTERSECTION, pyclipper.PFT_NONZERO, pyclipper.PFT_NONZERO)
s = np.asarray(solution[0]).reshape((-1, 2))
s = np.vstack([s, s[0]])
# Compute the drop average size
d_avg = (drop_dict.image_diameter_start + drop_dict.image_diameter_end) / 2.
# added
drop_xyY = my_utils.convert_rgb_to_xyY(drop[..., :3])
drop_xyY[np.isnan(drop_xyY)] = 0
# Using cache 2.5x faster (Raoul)
if 'mask_env_float64' not in cache or not np.all(solid_angle_map.shape[:2] == cache['mask_env_bool'].shape[:2]):
cache['mask_env_float64'] = np.zeros(env_map_xyY.shape[:2], dtype=np.float64)
cache['mask_env_bool'] = np.zeros(env_map_xyY.shape[:2], dtype=np.bool)
cache['mask_env_float64'][:] = 0.
cv2.fillConvexPoly(cache['mask_env_float64'], s, 1)
cache['mask_env_bool'][:] = cache['mask_env_float64']
mask_env = cache['mask_env_bool']
# Get the envmap in drop FOV
fov_solid_angle = solid_angle_map[mask_env].copy()
fov_envmap = env_map_xyY[mask_env].copy()
fov_xyY = (fov_envmap * np.expand_dims(fov_solid_angle, axis=-1)).sum(axis=0)
fov_xy_avg = fov_xyY[:2] / (np.sum(fov_solid_angle))
drop_xyY_fov_color = drop_xyY.copy()
drop_xyY_fov_color[..., :2] = fov_xy_avg
# In case of drop radiance from environment
ambient_lum = env_map_xyY[..., 2] * solid_angle_map
ambient_lum = np.sum(ambient_lum) / np.sum(solid_angle_map)
if irrad_type == 'ambient':
# TODO:: check if it was the only irrad_type here
avg_fov_lum = fov_xyY[..., 2] / np.sum(solid_angle_map)
drop_Y = 0.94 * avg_fov_lum + 0.06 * ambient_lum
drop_xyY_fov_color[..., 2] *= drop_Y
drop_color_rgb = my_utils.convert_xyY_to_rgb(drop_xyY_fov_color)
drop_color_bgr = drop_color_rgb[..., ::-1]
drop[..., :3][drop[..., 3] > 0] = drop_color_bgr[drop[..., 3] > 0]
# Apply defocus effects
drop, shift = self.circle_of_confusion(drop, drop_dict.world_position_start[2], drop_dict)
drop_minC_tmp = drop_minC - shift
drop_minC = np.array([np.clip(drop_minC_tmp[0], 0, bg.shape[1]), np.clip(drop_minC_tmp[1], 0, bg.shape[0])])
delta = drop_minC - drop_minC_tmp # evaluate clipping
drop = drop[:delta[1]] if delta[1] < 0 else drop[delta[1]:]
drop = drop[:, :delta[0]] if delta[0] < 0 else drop[:, delta[0]:]
# Compute the rain blending
tau_zero = np.sqrt(drop_size) / 50 # correct vr appendix (10.2) sec
length_opacity = opacity_attenuation * d_avg / (drop_dict.length + d_avg) # pr pg 5 camera effects
tau_one = exposure_time * length_opacity
rainy_bg_occ = rainy_bg[drop_minC[1]:drop_minC[1] + drop.shape[0],
drop_minC[0]:drop_minC[0] + drop.shape[1], :].copy()
rainy_mask_occ = rainy_mask[drop_minC[1]:drop_minC[1] + drop.shape[0],
drop_minC[0]:drop_minC[0] + drop.shape[1]].copy()
rainy_sat_mask_occ = rainy_saturation_mask[drop_minC[1]:drop_minC[1] + drop.shape[0],
drop_minC[0]:drop_minC[0] + drop.shape[1]].copy()
# Blending is directly applied on the rainy_bg. Hence, no conditions for application is later required.
# Which seems more correct and faster.
# The bias is that it is drop-order dependent
drop_vis = drop[:rainy_bg_occ.shape[0], :rainy_bg_occ.shape[1]]
drop_vis_alpha = drop_vis[:, :, 3]
drop_vis_alpha_ = np.expand_dims(drop_vis_alpha, axis=-1)
rainy_bg_occ = ((1. - ((drop_vis_alpha_ * tau_one) / exposure_time)) * rainy_bg_occ) + drop_vis[:, :, :3] * (
tau_one / tau_zero)
rainy_bg_occ = np.clip(rainy_bg_occ, 0, 1)
drop_blend = rainy_bg_occ
# -------------
rainy_mask_occ += drop_vis_alpha
drop_viz_sat = drop_vis[..., :3].copy()
rainy_sat_mask_occ += np.clip(drop_viz_sat.astype(np.float64), 0, 1)
rainy_bg[drop_minC[1]:drop_minC[1] + drop_blend.shape[0],
drop_minC[0]:drop_minC[0] + drop_blend.shape[1]] = rainy_bg_occ
rainy_mask[drop_minC[1]:drop_minC[1] + drop.shape[0],
drop_minC[0]:drop_minC[0] + drop.shape[1]] = rainy_mask_occ
rainy_saturation_mask[drop_minC[1]:drop_minC[1] + drop.shape[0],
drop_minC[0]:drop_minC[0] + drop.shape[1]] = rainy_sat_mask_occ
return rainy_bg, rainy_mask, rainy_saturation_mask, drop_vis, drop_blend, drop_minC
def compute_circle(self, o, is_infinity=False):
if is_infinity:
return self.f ** 2 / (self.N * o)
else:
result = ((o - self.focus_plane) * self.f ** 2) / (o * (self.focus_plane - self.f) * self.N)
return result / 4.65e-06
@staticmethod
def imshow_with_alpha(win_name, im):
'''
Function to show an image with alpha channel.
:param win_name: Name of the window.
:param im: Image to show.
'''
cv2.imshow(win_name, (im[..., 0:3] * (cv2.cvtColor(im[..., 3], cv2.COLOR_GRAY2BGR) / 255.)).astype(np.uint8))
cv2.waitKey(0)
@staticmethod
def make_rain_layer(drop, blended_drop, rain_layer, mask, drop_min_C):
layer_considered = rain_layer[drop_min_C[1]:drop_min_C[1] + drop.shape[0],
drop_min_C[0]:drop_min_C[0] + drop.shape[1]].copy()
mask_considered = mask[drop_min_C[1]:drop_min_C[1] + drop.shape[0],
drop_min_C[0]:drop_min_C[0] + drop.shape[1]].copy()
layer_considered[:, :, 3][mask_considered[:, :] > 0] = 255
layer_considered[:, :, :3][mask_considered[:, :] > 0] = np.maximum(
layer_considered[:, :, :3][mask_considered[:, :] > 0], blended_drop[mask_considered[:, :] > 0])
rain_layer[drop_min_C[1]:drop_min_C[1] + drop.shape[0],
drop_min_C[0]:drop_min_C[0] + drop.shape[1]] = layer_considered
return rain_layer
@staticmethod
def merge_layers(bg, over):
bg = cv2.cvtColor(bg, cv2.COLOR_BGR2BGRA)
open_cv_image = bg.copy()
threshold = 40
for i in range(over.shape[0]):
for j in range(over.shape[1]):
if over[i, j, 3] > threshold:
open_cv_image[i, j] = over[i, j]
if over[i, j, 3] > 0:
alpha = over[i, j, 3] / 255.0
open_cv_image[i, j] = alpha * over[i, j] + ((1 - alpha) * bg[i, j])
return open_cv_image
@staticmethod
def show(rain, background, split=True):
if split:
cv2.imshow('Rain Layer', rain)
cv2.imshow('Result', background)
cv2.waitKey(0)
else:
cv2.imshow('Result', np.vstack((background[..., 0:3], rain[..., 0:3])))
cv2.waitKey(0)
class FovComputation:
def __init__(self, camera):
self.camera = camera
@staticmethod
def normalize(v):
return v / np.linalg.norm(v)
@staticmethod
def rotation_matrix(axis, theta):
axis = np.asarray(axis)
c, s = np.cos(theta), np.sin(theta)
skv = np.roll(np.roll(np.diag(axis.flatten()), 1, 1), -1, 0)
m3 = (c * np.identity(3)) + s * (skv - skv.T) + ((1 - c) * np.outer(axis, axis))
return m3
@staticmethod
def intersection_sphere(position, direction, radius):
dx = direction[0]
dy = direction[1]
dz = direction[2]
x0 = position[0]
y0 = position[1]
z0 = position[2]
R = radius
cx = cy = cz = 0
a = dx * dx + dy * dy + dz * dz
b = 2 * dx * (x0 - cx) + 2 * dy * (y0 - cy) + 2 * dz * (z0 - cz)
c = cx * cx + cy * cy + cz * cz + x0 * x0 + y0 * y0 + z0 * z0 + \
-2 * (cx * x0 + cy * y0 + cz * z0) - R * R
disc = b ** 2 - 4 * a * c
sqrt_disc = np.sqrt(disc)
t1 = (-b + sqrt_disc) / (2 * a)
# t2 = (-b - sqrt_disc) / (2 * a) # No need to compute the other solution
# x = position[0] + t1 * dx
# y = position[1] + t1 * dy
# z = position[2] + t1 * dz
r1 = position + (t1 * direction)
# r2 = position + (t2 * direction)
return r1 # , r2
@staticmethod
def cart2sph(inpoint):
x = inpoint[0]
y = inpoint[1]
z = inpoint[2]
r = np.sqrt(x ** 2 + y ** 2 + z ** 2)
el = np.arctan2(z, np.sqrt(x ** 2 + y ** 2)) # Was an error here
az = np.arctan2(y, x)
if az < 0:
az += 2 * np.pi
if el < 0:
el += 2 * np.pi
if az > np.pi * 2:
az -= 2 * np.pi
if el > np.pi * 2:
el -= 2 * np.pi
return az, el, r
@staticmethod
def make_surface(theta0, theta1, phi0, phi1, radius, resolution=25):
THETA, PHI = np.meshgrid(np.linspace(theta0, theta1, resolution), np.linspace(phi0, phi1, resolution))
X = radius * np.sin(PHI) * np.cos(THETA)
Y = radius * np.sin(PHI) * np.sin(THETA)
Z = radius * np.cos(PHI)
return X, Y, Z
def compute_fov_plane_points(self, drop_dict, radius, fov, N, env_shape):
try:
drop_position = np.array((drop_dict.world_position_start + drop_dict.world_position_end) / 2)
drop_position[1], drop_position[2] = drop_position[2], drop_position[1].copy()
drop_direction = self.normalize(drop_position - self.camera)
theta = np.deg2rad(fov / 2)
# 2 Compute the plane for which u is the normal and lies in
a = drop_direction[0]
b = drop_direction[1]
c = drop_direction[2]
d = np.dot(drop_position, drop_direction)
if b == 0:
b = 0.001
# 3 Find point P on the plane
px = drop_position[1]
pz = 0
py = (-a * px + d - c * pz) / b
point = np.array([px, py, pz])
# Compute U = p-drop_dict
u = self.normalize(drop_position - point)
assert (np.all(~np.isnan(u)) and "Some values are NAN")
# 4 Compute v so angle between v-n is FOV/2
rot_vec = np.cross(u, drop_direction)
rot_mat = self.rotation_matrix(rot_vec, -theta)
v = np.dot(drop_direction, rot_mat)
# 5 Rotate v along dropdirection
phi = np.arange(0, 2 * np.pi, (2 * np.pi) / N)
vectors = np.array([])
for angle in phi:
M = self.rotation_matrix(drop_direction, angle)
vectors = np.append(vectors, [np.dot(v, M)])
vectors = np.reshape(vectors, (-1, 3))
# 6 Intersections
points = np.array([])
for dir_v in vectors:
points = np.append(points, self.intersection_sphere(drop_position, dir_v, radius))
points = np.reshape(points, (-1, 3))
# 3D TO PLANE MAPPING
azs = np.array([])
points_image = np.array([])
for p in points:
azimuth, elevation, r = self.cart2sph(p)
# Convert to the image encoding azimuth angle and shift: [-pi/2, 3*pi/2]
azimuth = ((2 * np.pi - azimuth) - np.pi / 2)
# Modulo to convert to azimuth: [0, 2*pi]
azimuth = azimuth % (2 * np.pi)
# Convert to homogeneous UV coord [0, 1]
u = azimuth / (2 * np.pi)
# Coordinate space change
elevation = (elevation + np.pi / 2)
# Modulo to convert to elevation: [0, 2*pi]
elevation = elevation % (2 * np.pi)
v = 1. - elevation / np.pi
azs = np.append(azs, azimuth)
points_image = np.append(points_image, [u * env_shape[1], v * env_shape[0]])
points_image = np.reshape(points_image, (-1, 2))
azs = np.append(azs, azs[0])
cond = np.bitwise_or(np.isclose(np.diff(azs), 0), np.diff(azs) < 0)
cond_true = cond
cond_false = ~cond
count_true = np.sum(cond_true)
count_false = np.sum(cond_false)
pos_true = np.where(cond_true)[0][0]
pos_false = np.where(cond_false)[0][0]
rows, cols = env_shape[:2]
if count_true == 1: # top
final_pts = np.vstack([points_image[:pos_true + 1],
[cols, points_image[pos_true][1]],
[cols, 0],
[0, 0],
[0, points_image[np.mod(pos_true + 1, N)][1]],
points_image[pos_true + 1:]]) # Top left
elif count_false == 1: # bottom
final_pts = np.vstack([points_image[:pos_false + 1],
[0, points_image[pos_false][1]],
[0, rows],
[cols, rows],
[cols, points_image[np.mod(pos_false + 1, N)][1]],
points_image[pos_false + 1:]]) # bot left
else:
final_pts = points_image
return np.array(final_pts), points, drop_position, drop_direction
except:
drop_position = np.array((drop_dict.world_position_start + drop_dict.world_position_end) / 2)
drop_position[1], drop_position[2] = drop_position[2], drop_position[1].copy()
drop_direction = self.normalize(drop_position - self.camera)
print('Drop skipped')
return np.array([]), np.array([]), drop_direction, drop_position
class EnvironmentMapGenerator:
def __init__(self, f, image_width, image_height):
# http://answers.opencv.org/question/17076/conversion-focal-distance-from-mm-to-pixels/
self.image_width = image_width
self.image_height = image_height
self.focal = int(((f * 1000) / 12.7) * image_width)
self.fillMatUp = 0
self.fillMatDown = 0
def convert2cyl(self, xyz, center):
s = self.focal
x = s * np.arctan(xyz[0] / self.focal) + center[0]
y = s * (xyz[1] / np.sqrt(xyz[0] ** 2 + self.focal ** 2)) + center[1]
return np.array([round(x), round(y)])
def convert2cyl_whole(self, xyz_all, center):
mod_xy = np.zeros((xyz_all.shape[0], xyz_all.shape[1], 2))
mod_xy[:, :, 0] = (self.focal * (xyz_all[:, :, 0] /
(np.sqrt(xyz_all[:, :, 1] ** 2 + self.focal ** 2)))) + center[1]
mod_xy[:, :, 1] = (self.focal * np.arctan(xyz_all[:, :, 1] / self.focal)) + center[0]
return mod_xy
def max_coord(self, center):
s = self.focal
x = s * np.arctan(center[0] / self.focal) + center[0]
y = s * (center[1] / np.sqrt(center[0] ** 2 + self.focal ** 2)) + center[1]
return round(x), round(y)
def min_coord(self, center):
s = self.focal
x = s * np.arctan(-center[0] / self.focal) + center[0]
y = s * (-center[1] / np.sqrt(center[0] ** 2 + self.focal ** 2)) + center[1]
return round(x), round(y)
def generate_map(self, background):
# Easier if everything is in int due to cv2 calls
background = (background * 255).astype(np.uint8)
center = np.array([int(background.shape[1] // 2), int(background.shape[0] // 2)])
max_x, max_y = self.max_coord(center)
min_x, min_y = self.min_coord(center)
mask = np.zeros((background.shape[0], int(max_x - min_x) + 1), np.uint8)
# creating co-ord matrix
xyz_all = np.zeros((background.shape[0], background.shape[1], 3))
x = np.linspace(0, background.shape[1] - 1, background.shape[1])
y = np.linspace(0, background.shape[0] - 1, background.shape[0])
xx, yy = np.meshgrid(x, y)
xyz_all[:, :, 0] = yy - center[1]
xyz_all[:, :, 1] = xx - center[0]
# fish-eye co-ord mapping
xy = np.round(self.convert2cyl_whole(xyz_all, center))
xy[:, :, 1] = xy[:, :, 1] - min_x
ind_vals, ind = np.unique(xy.astype(np.int32).reshape(-1, 2), axis=0, return_index=True)
# creating fish-eye image
if background.ndim == 3:
cyl = np.zeros((background.shape[0], int(max_x - min_x) + 1, 3), np.uint8)
cyl[ind_vals[:, 0], ind_vals[:, 1]] = background.reshape((-1, 3))[ind]
else:
cyl = np.zeros((background.shape[0], int(max_x - min_x) + 1), np.float64)
cyl[ind_vals[:, 0], ind_vals[:, 1]] = background.reshape((-1))[ind]
mask[ind_vals[:, 0], ind_vals[:, 1]] = 255
self.fillMatUp, self.fillMatDown = self.fill_matrices(cyl, mask)
# filling the bottom portion
mask_temp = cv2.flip(mask, 0)[:mask.shape[0] // 2, :]
cyl_temp = cv2.flip(cyl, 0)[:cyl.shape[0] // 2, :]
cyl_temp[np.where(mask_temp == 0)[0], np.where(mask_temp == 0)[1]] = cv2.flip(cyl, 0)[
self.fillMatDown[:, 0], self.fillMatDown[:, 1]]
cyl[-cyl_temp.shape[0]:, :] = cv2.flip(cyl_temp, 0)
# filling gaps
# filling the top portion
mask_temp = mask[:mask.shape[0] // 2, :]
cyl_temp = cyl[:cyl.shape[0] // 2, :]
cyl_temp[np.where(mask_temp == 0)[0], np.where(mask_temp == 0)[1]] = cyl[
self.fillMatUp[:, 0], self.fillMatUp[:, 1]]
cyl[:cyl_temp.shape[0], :] = cyl_temp
result = cv2.copyMakeBorder(cyl, 0, 0, int(cyl.shape[1] / 2), int(cyl.shape[1] / 2), cv2.BORDER_CONSTANT,
value=(0, 0, 0)) # TODO: check issue with float values ?
mask_result = cv2.copyMakeBorder(mask, 0, 0, int(mask.shape[1] / 2), int(mask.shape[1] / 2),
cv2.BORDER_CONSTANT, value=0) # TODO: check issue with float values ?
# attaching cropped flipped image to left image and mask
side = cyl[:, 0:int(cyl.shape[1] / 2)]
side = cv2.flip(side, 1) # TODO: check issue with float values ?
result[:, 0:side.shape[1]] = side
mask_side = mask[:, :cyl.shape[1] // 2]
mask_side = cv2.flip(mask_side, 1) # TODO: check issue with float values ?
mask_result[:, :mask_side.shape[1]] = mask_side
# attaching cropped flipped image to right
side = cyl[:, cyl.shape[1] // 2:]
side = cv2.flip(side, 1) # TODO: check issue with float values ?
result[:, result.shape[1] - side.shape[1]:result.shape[1]] = side
mask_side = mask[:, cyl.shape[1] // 2:]
mask_side = cv2.flip(mask_side, 1) # TODO: check issue with float values ?
mask_result[:, mask_result.shape[1] - side.shape[1]:] = mask_side
if result.ndim == 3:
blur = cv2.GaussianBlur(result, (15, 15), 0) # TODO: check issue with float values ?
mask_result = np.tile(np.expand_dims(mask_result, axis=-1), (1, 1, 3))
result = result + ((blur - result) & ~mask_result)
return result / 255.0
@staticmethod
def fill_matrices(cyl, mask):
# co-ord for filling upper part
mask_temp = mask[:mask.shape[0] // 2, :]
cyl_temp = cyl[:cyl.shape[0] // 2, :]
y_fill = np.argmax(mask_temp > 0, axis=0)
x_fill = np.arange(cyl_temp.shape[1])
xy_fill = np.concatenate([np.expand_dims(y_fill, axis=-1), np.expand_dims(x_fill, axis=-1)], axis=-1)
# indices which are empty
ind_not_filled = np.where(mask_temp == 0)
fill_mat_up = np.zeros((ind_not_filled[0].shape[0], 2)).astype(np.int)
for i in range(fill_mat_up.shape[0]):
x_ind = ind_not_filled[1][i]
fill_mat_up[i] = xy_fill[x_ind]
mask_temp = cv2.flip(mask[mask.shape[0] // 2:, :], 0)
cyl_temp = cv2.flip(cyl[cyl.shape[0] // 2:, :], 0)
y_fill = np.argmax(mask_temp > 0, axis=0)
x_fill = np.arange(cyl_temp.shape[1])
xy_fill = np.concatenate([np.expand_dims(y_fill, axis=-1), np.expand_dims(x_fill, axis=-1)], axis=-1)
# indices which are empty
ind_not_filled = np.where(mask_temp == 0)
fill_mat_down = np.zeros((ind_not_filled[0].shape[0], 2)).astype(np.int)
for i in range(fill_mat_down.shape[0]):
x_ind = ind_not_filled[1][i]
fill_mat_down[i] = xy_fill[x_ind]
return fill_mat_up, fill_mat_down
def generate_depth_env_maps(self, depth_maps):
depth_env_maps = []
h_depth_map, w_depth_map = depth_maps[0].shape
center = np.array([int(depth_maps.shape[2] / 2), int(depth_maps.shape[1] / 2)])
# getting max and min co-ords of the fish eye image
max_x, max_y = self.max_coord(center)
min_x, min_y = self.min_coord(center)
cyl = np.zeros((h_depth_map, int(max_x - min_x) + 1), np.float32)
mask = np.zeros((cyl.shape[0], cyl.shape[1]))
xyz_all = np.zeros((h_depth_map, w_depth_map, 3))
# creating co-ord matrix
x = np.arange(w_depth_map)
y = np.arange(h_depth_map)
xx, yy = np.meshgrid(x, y)
xyz_all[:, :, 0] = yy - center[1]
xyz_all[:, :, 1] = xx - center[0]
# fish-eye co-ord mapping
xy = np.round(self.convert2cyl_whole(xyz_all, center))
xy[:, :, 1] = xy[:, :, 1] - min_x
ind_vals, ind = np.unique(xy.astype(np.int32).reshape(-1, 2), axis=0, return_index=True)
cyl[ind_vals[:, 0], ind_vals[:, 1]] = depth_maps[0].reshape((-1))[ind]
mask[ind_vals[:, 0], ind_vals[:, 1]] = 255
for depthMapNo in range(depth_maps.shape[0]):
cyl[ind_vals[:, 0], ind_vals[:, 1]] = depth_maps[depthMapNo].reshape((-1))[ind]
mask[ind_vals[:, 0], ind_vals[:, 1]] = 255
# fill the top part
mask_temp = mask[:mask.shape[0] // 2, :]
cyl_temp = cyl[:cyl.shape[0] // 2, :]
cyl_temp[np.where(mask_temp == 0)[0], np.where(mask_temp == 0)[1]] = cyl[
self.fillMatUp[:, 0], self.fillMatUp[:, 1]]
cyl[:cyl.shape[0] // 2, :] = cyl_temp
# fill the bottom part
mask_temp = cv2.flip(mask, 0)[:mask.shape[0] // 2, :]
cyl_temp = cv2.flip(cyl, 0)[:cyl.shape[0] // 2, :]
cyl_temp[np.where(mask_temp == 0)[0], np.where(mask_temp == 0)[1]] = cv2.flip(cyl, 0)[
self.fillMatDown[:, 0], self.fillMatDown[:, 1]]
cyl[cyl.shape[0] // 2:, :] = cv2.flip(cyl_temp, 0)
# expanding the map by pasting flipped cropped images on left and right
result = cv2.copyMakeBorder(cyl, 0, 0, int(cyl.shape[1] / 2), int(cyl.shape[1] / 2), cv2.BORDER_CONSTANT,
value=(0, 0, 0))
# paste left
side = cyl[:, 0:int(cyl.shape[1] / 2)]
side = cv2.flip(side, 1)
result[:, 0:side.shape[1]] = side
# paste right
side = cyl[:, int(cyl.shape[1] / 2):cyl.shape[1]]
side = cv2.flip(side, 1)
result[:, result.shape[1] - side.shape[1]:result.shape[1]] = side
depth_env_maps.append(result)
return np.array(depth_env_maps)