diff --git a/include/llvm/CodeGen/Passes.h b/include/llvm/CodeGen/Passes.h
index 5d5e68dfaa15..7a3629c6a059 100644
--- a/include/llvm/CodeGen/Passes.h
+++ b/include/llvm/CodeGen/Passes.h
@@ -402,10 +402,6 @@ namespace llvm {
 
   /// This pass frees the memory occupied by the MachineFunction.
   FunctionPass *createFreeMachineFunctionPass();
-
-  /// This pass performs outlining on machine instructions directly before
-  /// printing assembly.
-  ModulePass *createMachineOutlinerPass();
 } // End llvm namespace
 
 /// Target machine pass initializer for passes with dependencies. Use with
diff --git a/include/llvm/InitializePasses.h b/include/llvm/InitializePasses.h
index 67bb95b13e27..d30d66967ecc 100644
--- a/include/llvm/InitializePasses.h
+++ b/include/llvm/InitializePasses.h
@@ -236,7 +236,6 @@ void initializeMachineLICMPass(PassRegistry&);
 void initializeMachineLoopInfoPass(PassRegistry&);
 void initializeMachineModuleInfoPass(PassRegistry&);
 void initializeMachineOptimizationRemarkEmitterPassPass(PassRegistry&);
-void initializeMachineOutlinerPass(PassRegistry&);
 void initializeMachinePipelinerPass(PassRegistry&);
 void initializeMachinePostDominatorTreePass(PassRegistry&);
 void initializeMachineRegionInfoPassPass(PassRegistry&);
diff --git a/include/llvm/Target/TargetInstrInfo.h b/include/llvm/Target/TargetInstrInfo.h
index b865e27c7b74..4cb61feca881 100644
--- a/include/llvm/Target/TargetInstrInfo.h
+++ b/include/llvm/Target/TargetInstrInfo.h
@@ -1508,63 +1508,6 @@ class TargetInstrInfo : public MCInstrInfo {
     return false;
   }
 
-  /// \brief Return how many instructions would be saved by outlining a
-  /// sequence containing \p SequenceSize instructions that appears
-  /// \p Occurrences times in a module.
-  virtual unsigned getOutliningBenefit(size_t SequenceSize, size_t Occurrences)
-  const {
-    llvm_unreachable(
-        "Target didn't implement TargetInstrInfo::getOutliningBenefit!");
-  }
-
-  /// Represents how an instruction should be mapped by the outliner.
-  /// \p Legal instructions are those which are safe to outline.
-  /// \p Illegal instructions are those which cannot be outlined.
-  /// \p Invisible instructions are instructions which can be outlined, but
-  /// shouldn't actually impact the outlining result.
-  enum MachineOutlinerInstrType {Legal, Illegal, Invisible};
-
-  /// Return true if the instruction is legal to outline.
-  virtual MachineOutlinerInstrType getOutliningType(MachineInstr &MI) const {
-    llvm_unreachable(
-        "Target didn't implement TargetInstrInfo::getOutliningType!");
-  }
-
-  /// Insert a custom epilogue for outlined functions.
-  /// This may be empty, in which case no epilogue or return statement will be
-  /// emitted.
-  virtual void insertOutlinerEpilogue(MachineBasicBlock &MBB,
-                                      MachineFunction &MF) const {
-    llvm_unreachable(
-        "Target didn't implement TargetInstrInfo::insertOutlinerEpilogue!");
-  }
-
-  /// Insert a call to an outlined function into the program.
-  /// Returns an iterator to the spot where we inserted the call. This must be
-  /// implemented by the target.
-  virtual MachineBasicBlock::iterator
-  insertOutlinedCall(Module &M, MachineBasicBlock &MBB,
-                     MachineBasicBlock::iterator &It, MachineFunction &MF)
-  const {
-    llvm_unreachable(
-        "Target didn't implement TargetInstrInfo::insertOutlinedCall!");
-  }
-
-  /// Insert a custom prologue for outlined functions.
-  /// This may be empty, in which case no prologue will be emitted.
-  virtual void insertOutlinerPrologue(MachineBasicBlock &MBB,
-                                      MachineFunction &MF) const {
-    llvm_unreachable(
-        "Target didn't implement TargetInstrInfo::insertOutlinerPrologue!");
-  }
-
-  /// Return true if the function can safely be outlined from.
-  /// By default, this means that the function has no red zone.
-  virtual bool isFunctionSafeToOutlineFrom(MachineFunction &F) const {
-    llvm_unreachable("Target didn't implement "
-                     "TargetInstrInfo::isFunctionSafeToOutlineFrom!");
-  }
-
 private:
   unsigned CallFrameSetupOpcode, CallFrameDestroyOpcode;
   unsigned CatchRetOpcode;
diff --git a/lib/CodeGen/CMakeLists.txt b/lib/CodeGen/CMakeLists.txt
index 5f02a4d7252c..817d4e89cf12 100644
--- a/lib/CodeGen/CMakeLists.txt
+++ b/lib/CodeGen/CMakeLists.txt
@@ -74,7 +74,6 @@ add_llvm_library(LLVMCodeGen
   MachineModuleInfo.cpp
   MachineModuleInfoImpls.cpp
   MachineOptimizationRemarkEmitter.cpp
-  MachineOutliner.cpp
   MachinePassRegistry.cpp
   MachinePipeliner.cpp
   MachinePostDominators.cpp
diff --git a/lib/CodeGen/CodeGen.cpp b/lib/CodeGen/CodeGen.cpp
index 6afd9648dd10..da4d7c992b06 100644
--- a/lib/CodeGen/CodeGen.cpp
+++ b/lib/CodeGen/CodeGen.cpp
@@ -57,7 +57,6 @@ void llvm::initializeCodeGen(PassRegistry &Registry) {
   initializeMachineLoopInfoPass(Registry);
   initializeMachineModuleInfoPass(Registry);
   initializeMachineOptimizationRemarkEmitterPassPass(Registry);
-  initializeMachineOutlinerPass(Registry);
   initializeMachinePipelinerPass(Registry);
   initializeMachinePostDominatorTreePass(Registry);
   initializeMachineRegionInfoPassPass(Registry);
diff --git a/lib/CodeGen/MachineOutliner.cpp b/lib/CodeGen/MachineOutliner.cpp
deleted file mode 100644
index 8cc62ca7a157..000000000000
--- a/lib/CodeGen/MachineOutliner.cpp
+++ /dev/null
@@ -1,1399 +0,0 @@
-//===---- MachineOutliner.cpp - Outline instructions -----------*- C++ -*-===//
-//
-//                     The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-///
-/// \file
-/// Replaces repeated sequences of instructions with function calls.
-///
-/// This works by placing every instruction from every basic block in a
-/// suffix tree, and repeatedly querying that tree for repeated sequences of
-/// instructions. If a sequence of instructions appears often, then it ought
-/// to be beneficial to pull out into a function.
-///
-/// This was originally presented at the 2016 LLVM Developers' Meeting in the
-/// talk "Reducing Code Size Using Outlining". For a high-level overview of
-/// how this pass works, the talk is available on YouTube at
-///
-/// https://www.youtube.com/watch?v=yorld-WSOeU
-///
-/// The slides for the talk are available at
-///
-/// http://www.llvm.org/devmtg/2016-11/Slides/Paquette-Outliner.pdf
-///
-/// The talk provides an overview of how the outliner finds candidates and
-/// ultimately outlines them. It describes how the main data structure for this
-/// pass, the suffix tree, is queried and purged for candidates. It also gives
-/// a simplified suffix tree construction algorithm for suffix trees based off
-/// of the algorithm actually used here, Ukkonen's algorithm.
-///
-/// For the original RFC for this pass, please see
-///
-/// http://lists.llvm.org/pipermail/llvm-dev/2016-August/104170.html
-///
-/// For more information on the suffix tree data structure, please see
-/// https://www.cs.helsinki.fi/u/ukkonen/SuffixT1withFigs.pdf
-///
-//===----------------------------------------------------------------------===//
-#include "llvm/ADT/DenseMap.h"
-#include "llvm/ADT/Statistic.h"
-#include "llvm/ADT/Twine.h"
-#include "llvm/CodeGen/MachineFrameInfo.h"
-#include "llvm/CodeGen/MachineFunction.h"
-#include "llvm/CodeGen/MachineInstrBuilder.h"
-#include "llvm/CodeGen/MachineModuleInfo.h"
-#include "llvm/CodeGen/Passes.h"
-#include "llvm/IR/IRBuilder.h"
-#include "llvm/Support/Allocator.h"
-#include "llvm/Support/Debug.h"
-#include "llvm/Support/raw_ostream.h"
-#include "llvm/Target/TargetInstrInfo.h"
-#include "llvm/Target/TargetMachine.h"
-#include "llvm/Target/TargetRegisterInfo.h"
-#include "llvm/Target/TargetSubtargetInfo.h"
-#include <functional>
-#include <map>
-#include <sstream>
-#include <tuple>
-#include <vector>
-
-#define DEBUG_TYPE "machine-outliner"
-
-using namespace llvm;
-
-STATISTIC(NumOutlined, "Number of candidates outlined");
-STATISTIC(FunctionsCreated, "Number of functions created");
-
-namespace {
-
-/// Represents an undefined index in the suffix tree.
-const size_t EmptyIdx = -1;
-
-/// A node in a suffix tree which represents a substring or suffix.
-///
-/// Each node has either no children or at least two children, with the root
-/// being a exception in the empty tree.
-///
-/// Children are represented as a map between unsigned integers and nodes. If
-/// a node N has a child M on unsigned integer k, then the mapping represented
-/// by N is a proper prefix of the mapping represented by M. Note that this,
-/// although similar to a trie is somewhat different: each node stores a full
-/// substring of the full mapping rather than a single character state.
-///
-/// Each internal node contains a pointer to the internal node representing
-/// the same string, but with the first character chopped off. This is stored
-/// in \p Link. Each leaf node stores the start index of its respective
-/// suffix in \p SuffixIdx.
-struct SuffixTreeNode {
-
-  /// The children of this node.
-  ///
-  /// A child existing on an unsigned integer implies that from the mapping
-  /// represented by the current node, there is a way to reach another
-  /// mapping by tacking that character on the end of the current string.
-  DenseMap<unsigned, SuffixTreeNode *> Children;
-
-  /// A flag set to false if the node has been pruned from the tree.
-  bool IsInTree = true;
-
-  /// The start index of this node's substring in the main string.
-  size_t StartIdx = EmptyIdx;
-
-  /// The end index of this node's substring in the main string.
-  ///
-  /// Every leaf node must have its \p EndIdx incremented at the end of every
-  /// step in the construction algorithm. To avoid having to update O(N)
-  /// nodes individually at the end of every step, the end index is stored
-  /// as a pointer.
-  size_t *EndIdx = nullptr;
-
-  /// For leaves, the start index of the suffix represented by this node.
-  ///
-  /// For all other nodes, this is ignored.
-  size_t SuffixIdx = EmptyIdx;
-
-  /// \brief For internal nodes, a pointer to the internal node representing
-  /// the same sequence with the first character chopped off.
-  ///
-  /// This has two major purposes in the suffix tree. The first is as a
-  /// shortcut in Ukkonen's construction algorithm. One of the things that
-  /// Ukkonen's algorithm does to achieve linear-time construction is
-  /// keep track of which node the next insert should be at. This makes each
-  /// insert O(1), and there are a total of O(N) inserts. The suffix link
-  /// helps with inserting children of internal nodes.
-  ///
-  /// Say we add a child to an internal node with associated mapping S. The 
-  /// next insertion must be at the node representing S - its first character.
-  /// This is given by the way that we iteratively build the tree in Ukkonen's
-  /// algorithm. The main idea is to look at the suffixes of each prefix in the
-  /// string, starting with the longest suffix of the prefix, and ending with
-  /// the shortest. Therefore, if we keep pointers between such nodes, we can
-  /// move to the next insertion point in O(1) time. If we don't, then we'd
-  /// have to query from the root, which takes O(N) time. This would make the
-  /// construction algorithm O(N^2) rather than O(N).
-  ///
-  /// The suffix link is also used during the tree pruning process to let us
-  /// quickly throw out a bunch of potential overlaps. Say we have a sequence
-  /// S we want to outline. Then each of its suffixes contribute to at least
-  /// one overlapping case. Therefore, we can follow the suffix links
-  /// starting at the node associated with S to the root and "delete" those
-  /// nodes, save for the root. For each candidate, this removes
-  /// O(|candidate|) overlaps from the search space. We don't actually
-  /// completely invalidate these nodes though; doing that is far too
-  /// aggressive. Consider the following pathological string:
-  ///
-  /// 1 2 3 1 2 3 2 3 2 3 2 3 2 3 2 3 2 3
-  ///
-  /// If we, for the sake of example, outlined 1 2 3, then we would throw
-  /// out all instances of 2 3. This isn't desirable. To get around this,
-  /// when we visit a link node, we decrement its occurrence count by the
-  /// number of sequences we outlined in the current step. In the pathological
-  /// example, the 2 3 node would have an occurrence count of 8, while the
-  /// 1 2 3 node would have an occurrence count of 2. Thus, the 2 3 node
-  /// would survive to the next round allowing us to outline the extra
-  /// instances of 2 3.
-  SuffixTreeNode *Link = nullptr;
-
-  /// The parent of this node. Every node except for the root has a parent.
-  SuffixTreeNode *Parent = nullptr;
-
-  /// The number of times this node's string appears in the tree.
-  ///
-  /// This is equal to the number of leaf children of the string. It represents
-  /// the number of suffixes that the node's string is a prefix of.
-  size_t OccurrenceCount = 0;
-
-  /// Returns true if this node is a leaf.
-  bool isLeaf() const { return SuffixIdx != EmptyIdx; }
-
-  /// Returns true if this node is the root of its owning \p SuffixTree.
-  bool isRoot() const { return StartIdx == EmptyIdx; }
-
-  /// Return the number of elements in the substring associated with this node.
-  size_t size() const {
-
-    // Is it the root? If so, it's the empty string so return 0.
-    if (isRoot())
-      return 0;
-
-    assert(*EndIdx != EmptyIdx && "EndIdx is undefined!");
-
-    // Size = the number of elements in the string.
-    // For example, [0 1 2 3] has length 4, not 3. 3-0 = 3, so we have 3-0+1.
-    return *EndIdx - StartIdx + 1;
-  }
-
-  SuffixTreeNode(size_t StartIdx, size_t *EndIdx, SuffixTreeNode *Link,
-                 SuffixTreeNode *Parent)
-      : StartIdx(StartIdx), EndIdx(EndIdx), Link(Link), Parent(Parent) {}
-
-  SuffixTreeNode() {}
-};
-
-/// A data structure for fast substring queries.
-///
-/// Suffix trees represent the suffixes of their input strings in their leaves.
-/// A suffix tree is a type of compressed trie structure where each node
-/// represents an entire substring rather than a single character. Each leaf
-/// of the tree is a suffix.
-///
-/// A suffix tree can be seen as a type of state machine where each state is a
-/// substring of the full string. The tree is structured so that, for a string
-/// of length N, there are exactly N leaves in the tree. This structure allows
-/// us to quickly find repeated substrings of the input string.
-///
-/// In this implementation, a "string" is a vector of unsigned integers.
-/// These integers may result from hashing some data type. A suffix tree can
-/// contain 1 or many strings, which can then be queried as one large string.
-///
-/// The suffix tree is implemented using Ukkonen's algorithm for linear-time
-/// suffix tree construction. Ukkonen's algorithm is explained in more detail
-/// in the paper by Esko Ukkonen "On-line construction of suffix trees. The
-/// paper is available at
-///
-/// https://www.cs.helsinki.fi/u/ukkonen/SuffixT1withFigs.pdf
-class SuffixTree {
-private:
-  /// Each element is an integer representing an instruction in the module.
-  ArrayRef<unsigned> Str;
-
-  /// Maintains each node in the tree.
-  BumpPtrAllocator NodeAllocator;
-
-  /// The root of the suffix tree.
-  ///
-  /// The root represents the empty string. It is maintained by the
-  /// \p NodeAllocator like every other node in the tree.
-  SuffixTreeNode *Root = nullptr;
-
-  /// Stores each leaf in the tree for better pruning.
-  std::vector<SuffixTreeNode *> LeafVector;
-
-  /// Maintains the end indices of the internal nodes in the tree.
-  ///
-  /// Each internal node is guaranteed to never have its end index change
-  /// during the construction algorithm; however, leaves must be updated at
-  /// every step. Therefore, we need to store leaf end indices by reference
-  /// to avoid updating O(N) leaves at every step of construction. Thus,
-  /// every internal node must be allocated its own end index.
-  BumpPtrAllocator InternalEndIdxAllocator;
-
-  /// The end index of each leaf in the tree.
-  size_t LeafEndIdx = -1;
-
-  /// \brief Helper struct which keeps track of the next insertion point in
-  /// Ukkonen's algorithm.
-  struct ActiveState {
-    /// The next node to insert at.
-    SuffixTreeNode *Node;
-
-    /// The index of the first character in the substring currently being added.
-    size_t Idx = EmptyIdx;
-
-    /// The length of the substring we have to add at the current step.
-    size_t Len = 0;
-  };
-
-  /// \brief The point the next insertion will take place at in the
-  /// construction algorithm.
-  ActiveState Active;
-
-  /// Allocate a leaf node and add it to the tree.
-  ///
-  /// \param Parent The parent of this node.
-  /// \param StartIdx The start index of this node's associated string.
-  /// \param Edge The label on the edge leaving \p Parent to this node.
-  ///
-  /// \returns A pointer to the allocated leaf node.
-  SuffixTreeNode *insertLeaf(SuffixTreeNode &Parent, size_t StartIdx,
-                             unsigned Edge) {
-
-    assert(StartIdx <= LeafEndIdx && "String can't start after it ends!");
-
-    SuffixTreeNode *N = new (NodeAllocator) SuffixTreeNode(StartIdx, 
-                                                           &LeafEndIdx,
-                                                           nullptr,
-                                                           &Parent);
-    Parent.Children[Edge] = N;
-
-    return N;
-  }
-
-  /// Allocate an internal node and add it to the tree.
-  ///
-  /// \param Parent The parent of this node. Only null when allocating the root.
-  /// \param StartIdx The start index of this node's associated string.
-  /// \param EndIdx The end index of this node's associated string.
-  /// \param Edge The label on the edge leaving \p Parent to this node.
-  ///
-  /// \returns A pointer to the allocated internal node.
-  SuffixTreeNode *insertInternalNode(SuffixTreeNode *Parent, size_t StartIdx,
-                                     size_t EndIdx, unsigned Edge) {
-
-    assert(StartIdx <= EndIdx && "String can't start after it ends!");
-    assert(!(!Parent && StartIdx != EmptyIdx) &&
-    "Non-root internal nodes must have parents!");
-
-    size_t *E = new (InternalEndIdxAllocator) size_t(EndIdx);
-    SuffixTreeNode *N = new (NodeAllocator) SuffixTreeNode(StartIdx,
-                                                           E,
-                                                           Root,
-                                                           Parent);
-    if (Parent)
-      Parent->Children[Edge] = N;
-
-    return N;
-  }
-
-  /// \brief Set the suffix indices of the leaves to the start indices of their
-  /// respective suffixes. Also stores each leaf in \p LeafVector at its
-  /// respective suffix index.
-  ///
-  /// \param[in] CurrNode The node currently being visited.
-  /// \param CurrIdx The current index of the string being visited.
-  void setSuffixIndices(SuffixTreeNode &CurrNode, size_t CurrIdx) {
-
-    bool IsLeaf = CurrNode.Children.size() == 0 && !CurrNode.isRoot();
-
-    // Traverse the tree depth-first.
-    for (auto &ChildPair : CurrNode.Children) {
-      assert(ChildPair.second && "Node had a null child!");
-      setSuffixIndices(*ChildPair.second,
-                       CurrIdx + ChildPair.second->size());
-    }
-
-    // Is this node a leaf?
-    if (IsLeaf) {
-      // If yes, give it a suffix index and bump its parent's occurrence count.
-      CurrNode.SuffixIdx = Str.size() - CurrIdx;
-      assert(CurrNode.Parent && "CurrNode had no parent!");
-      CurrNode.Parent->OccurrenceCount++;
-
-      // Store the leaf in the leaf vector for pruning later.
-      LeafVector[CurrNode.SuffixIdx] = &CurrNode;
-    }
-  }
-
-  /// \brief Construct the suffix tree for the prefix of the input ending at
-  /// \p EndIdx.
-  ///
-  /// Used to construct the full suffix tree iteratively. At the end of each
-  /// step, the constructed suffix tree is either a valid suffix tree, or a
-  /// suffix tree with implicit suffixes. At the end of the final step, the
-  /// suffix tree is a valid tree.
-  ///
-  /// \param EndIdx The end index of the current prefix in the main string.
-  /// \param SuffixesToAdd The number of suffixes that must be added
-  /// to complete the suffix tree at the current phase.
-  ///
-  /// \returns The number of suffixes that have not been added at the end of
-  /// this step.
-  unsigned extend(size_t EndIdx, size_t SuffixesToAdd) {
-    SuffixTreeNode *NeedsLink = nullptr;
-
-    while (SuffixesToAdd > 0) {
-    
-      // Are we waiting to add anything other than just the last character?
-      if (Active.Len == 0) {
-        // If not, then say the active index is the end index.
-        Active.Idx = EndIdx;
-      }
-
-      assert(Active.Idx <= EndIdx && "Start index can't be after end index!");
-
-      // The first character in the current substring we're looking at.
-      unsigned FirstChar = Str[Active.Idx];
-
-      // Have we inserted anything starting with FirstChar at the current node?
-      if (Active.Node->Children.count(FirstChar) == 0) {
-        // If not, then we can just insert a leaf and move too the next step.
-        insertLeaf(*Active.Node, EndIdx, FirstChar);
-
-        // The active node is an internal node, and we visited it, so it must
-        // need a link if it doesn't have one.
-        if (NeedsLink) {
-          NeedsLink->Link = Active.Node;
-          NeedsLink = nullptr;
-        }
-      } else {
-        // There's a match with FirstChar, so look for the point in the tree to
-        // insert a new node.
-        SuffixTreeNode *NextNode = Active.Node->Children[FirstChar];
-
-        size_t SubstringLen = NextNode->size();
-
-        // Is the current suffix we're trying to insert longer than the size of
-        // the child we want to move to?
-        if (Active.Len >= SubstringLen) {
-          // If yes, then consume the characters we've seen and move to the next
-          // node.
-          Active.Idx += SubstringLen;
-          Active.Len -= SubstringLen;
-          Active.Node = NextNode;
-          continue;
-        }
-
-        // Otherwise, the suffix we're trying to insert must be contained in the
-        // next node we want to move to.
-        unsigned LastChar = Str[EndIdx];
-
-        // Is the string we're trying to insert a substring of the next node?
-        if (Str[NextNode->StartIdx + Active.Len] == LastChar) {
-          // If yes, then we're done for this step. Remember our insertion point
-          // and move to the next end index. At this point, we have an implicit
-          // suffix tree.
-          if (NeedsLink && !Active.Node->isRoot()) {
-            NeedsLink->Link = Active.Node;
-            NeedsLink = nullptr;
-          }
-
-          Active.Len++;
-          break;
-        }
-
-        // The string we're trying to insert isn't a substring of the next node,
-        // but matches up to a point. Split the node.
-        //
-        // For example, say we ended our search at a node n and we're trying to
-        // insert ABD. Then we'll create a new node s for AB, reduce n to just
-        // representing C, and insert a new leaf node l to represent d. This
-        // allows us to ensure that if n was a leaf, it remains a leaf.
-        //
-        //   | ABC  ---split--->  | AB
-        //   n                    s
-        //                     C / \ D
-        //                      n   l
-
-        // The node s from the diagram
-        SuffixTreeNode *SplitNode =
-            insertInternalNode(Active.Node,
-                               NextNode->StartIdx,
-                               NextNode->StartIdx + Active.Len - 1,
-                               FirstChar);
-
-        // Insert the new node representing the new substring into the tree as
-        // a child of the split node. This is the node l from the diagram.
-        insertLeaf(*SplitNode, EndIdx, LastChar);
-
-        // Make the old node a child of the split node and update its start
-        // index. This is the node n from the diagram.
-        NextNode->StartIdx += Active.Len;
-        NextNode->Parent = SplitNode;
-        SplitNode->Children[Str[NextNode->StartIdx]] = NextNode;
-
-        // SplitNode is an internal node, update the suffix link.
-        if (NeedsLink)
-          NeedsLink->Link = SplitNode;
-
-        NeedsLink = SplitNode;
-      }
-
-      // We've added something new to the tree, so there's one less suffix to
-      // add.
-      SuffixesToAdd--;
-
-      if (Active.Node->isRoot()) {
-        if (Active.Len > 0) {
-          Active.Len--;
-          Active.Idx = EndIdx - SuffixesToAdd + 1;
-        }
-      } else {
-        // Start the next phase at the next smallest suffix.
-        Active.Node = Active.Node->Link;
-      }
-    }
-
-    return SuffixesToAdd;
-  }
-
-  /// \brief Return the start index and length of a string which maximizes a
-  /// benefit function by traversing the tree depth-first.
-  ///
-  /// Helper function for \p bestRepeatedSubstring.
-  ///
-  /// \param CurrNode The node currently being visited.
-  /// \param CurrLen Length of the current string.
-  /// \param[out] BestLen Length of the most beneficial substring.
-  /// \param[out] MaxBenefit Benefit of the most beneficial substring.
-  /// \param[out] BestStartIdx Start index of the most beneficial substring.
-  /// \param BenefitFn The function the query should return a maximum string
-  /// for.
-  void findBest(SuffixTreeNode &CurrNode, size_t CurrLen, size_t &BestLen,
-                size_t &MaxBenefit, size_t &BestStartIdx,
-                const std::function<unsigned(SuffixTreeNode &, size_t CurrLen)>
-                &BenefitFn) {
-
-    if (!CurrNode.IsInTree)
-      return;
-
-    // Can we traverse further down the tree?
-    if (!CurrNode.isLeaf()) {
-      // If yes, continue the traversal.
-      for (auto &ChildPair : CurrNode.Children) {
-        if (ChildPair.second && ChildPair.second->IsInTree)
-          findBest(*ChildPair.second, CurrLen + ChildPair.second->size(),
-                   BestLen, MaxBenefit, BestStartIdx, BenefitFn);
-      }
-    } else {
-      // We hit a leaf.
-      size_t StringLen = CurrLen - CurrNode.size();
-      unsigned Benefit = BenefitFn(CurrNode, StringLen);
-
-      // Did we do better than in the last step?
-      if (Benefit <= MaxBenefit)
-        return;
-
-      // We did better, so update the best string.
-      MaxBenefit = Benefit;
-      BestStartIdx = CurrNode.SuffixIdx;
-      BestLen = StringLen;
-    }
-  }
-
-public:
-
-  /// \brief Return a substring of the tree with maximum benefit if such a
-  /// substring exists.
-  ///
-  /// Clears the input vector and fills it with a maximum substring or empty.
-  ///
-  /// \param[in,out] Best The most beneficial substring in the tree. Empty
-  /// if it does not exist.
-  /// \param BenefitFn The function the query should return a maximum string
-  /// for.
-  void bestRepeatedSubstring(std::vector<unsigned> &Best,
-                 const std::function<unsigned(SuffixTreeNode &, size_t CurrLen)>
-                 &BenefitFn) {
-    Best.clear();
-    size_t Length = 0;   // Becomes the length of the best substring.
-    size_t Benefit = 0;  // Becomes the benefit of the best substring.
-    size_t StartIdx = 0; // Becomes the start index of the best substring.
-    findBest(*Root, 0, Length, Benefit, StartIdx, BenefitFn);
-
-    for (size_t Idx = 0; Idx < Length; Idx++)
-      Best.push_back(Str[Idx + StartIdx]);
-  }
-
-  /// Perform a depth-first search for \p QueryString on the suffix tree.
-  ///
-  /// \param QueryString The string to search for.
-  /// \param CurrIdx The current index in \p QueryString that is being matched
-  /// against.
-  /// \param CurrNode The suffix tree node being searched in.
-  ///
-  /// \returns A \p SuffixTreeNode that \p QueryString appears in if such a
-  /// node exists, and \p nullptr otherwise.
-  SuffixTreeNode *findString(const std::vector<unsigned> &QueryString,
-                             size_t &CurrIdx, SuffixTreeNode *CurrNode) {
-
-    // The search ended at a nonexistent or pruned node. Quit.
-    if (!CurrNode || !CurrNode->IsInTree)
-      return nullptr;
-
-    unsigned Edge = QueryString[CurrIdx]; // The edge we want to move on.
-    SuffixTreeNode *NextNode = CurrNode->Children[Edge]; // Next node in query.
-
-    if (CurrNode->isRoot()) {
-      // If we're at the root we have to check if there's a child, and move to
-      // that child. Don't consume the character since \p Root represents the
-      // empty string.
-      if (NextNode && NextNode->IsInTree)
-        return findString(QueryString, CurrIdx, NextNode);
-      return nullptr;
-    }
-
-    size_t StrIdx = CurrNode->StartIdx;
-    size_t MaxIdx = QueryString.size();
-    bool ContinueSearching = false;
-
-    // Match as far as possible into the string. If there's a mismatch, quit.
-    for (; CurrIdx < MaxIdx; CurrIdx++, StrIdx++) {
-      Edge = QueryString[CurrIdx];
-
-      // We matched perfectly, but still have a remainder to search.
-      if (StrIdx > *(CurrNode->EndIdx)) {
-        ContinueSearching = true;
-        break;
-      }
-
-      if (Edge != Str[StrIdx])
-        return nullptr;
-    }
-
-    NextNode = CurrNode->Children[Edge];
-
-    // Move to the node which matches what we're looking for and continue
-    // searching.
-    if (ContinueSearching)
-      return findString(QueryString, CurrIdx, NextNode);
-
-    // We matched perfectly so we're done.
-    return CurrNode;
-  }
-
-  /// \brief Remove a node from a tree and all nodes representing proper
-  /// suffixes of that node's string.
-  ///
-  /// This is used in the outlining algorithm to reduce the number of
-  /// overlapping candidates
-  ///
-  /// \param N The suffix tree node to start pruning from.
-  /// \param Len The length of the string to be pruned.
-  ///
-  /// \returns True if this candidate didn't overlap with a previously chosen
-  /// candidate.
-  bool prune(SuffixTreeNode *N, size_t Len) {
-
-    bool NoOverlap = true;
-    std::vector<unsigned> IndicesToPrune;
-
-    // Look at each of N's children.
-    for (auto &ChildPair : N->Children) {
-      SuffixTreeNode *M = ChildPair.second;
-
-      // Is this a leaf child?
-      if (M && M->IsInTree && M->isLeaf()) {
-        // Save each leaf child's suffix indices and remove them from the tree.
-        IndicesToPrune.push_back(M->SuffixIdx);
-        M->IsInTree = false;
-      }
-    }
-
-    // Remove each suffix we have to prune from the tree. Each of these will be
-    // I + some offset for I in IndicesToPrune and some offset < Len.
-    unsigned Offset = 1;
-    for (unsigned CurrentSuffix = 1; CurrentSuffix < Len; CurrentSuffix++) {
-      for (unsigned I : IndicesToPrune) {
-
-        unsigned PruneIdx = I + Offset;
-
-        // Is this index actually in the string?
-        if (PruneIdx < LeafVector.size()) {
-          // If yes, we have to try and prune it.
-          // Was the current leaf already pruned by another candidate?
-          if (LeafVector[PruneIdx]->IsInTree) {
-            // If not, prune it.
-            LeafVector[PruneIdx]->IsInTree = false;
-          } else {
-            // If yes, signify that we've found an overlap, but keep pruning.
-            NoOverlap = false;
-          }
-
-          // Update the parent of the current leaf's occurrence count.
-          SuffixTreeNode *Parent = LeafVector[PruneIdx]->Parent;
-
-          // Is the parent still in the tree?
-          if (Parent->OccurrenceCount > 0) {
-            Parent->OccurrenceCount--;
-            Parent->IsInTree = (Parent->OccurrenceCount > 1);
-          }
-        }
-      }
-
-      // Move to the next character in the string.
-      Offset++;
-    }
-
-    // We know we can never outline anything which starts one index back from
-    // the indices we want to outline. This is because our minimum outlining
-    // length is always 2.
-    for (unsigned I : IndicesToPrune) {
-      if (I > 0) {
-
-        unsigned PruneIdx = I-1;
-        SuffixTreeNode *Parent = LeafVector[PruneIdx]->Parent;
-
-        // Was the leaf one index back from I already pruned?
-        if (LeafVector[PruneIdx]->IsInTree) {
-          // If not, prune it.
-          LeafVector[PruneIdx]->IsInTree = false;
-        } else {
-          // If yes, signify that we've found an overlap, but keep pruning.
-          NoOverlap = false;
-        }
-
-        // Update the parent of the current leaf's occurrence count.
-        if (Parent->OccurrenceCount > 0) {
-          Parent->OccurrenceCount--;
-          Parent->IsInTree = (Parent->OccurrenceCount > 1);
-        }
-      }
-    }
-
-    // Finally, remove N from the tree and set its occurrence count to 0.
-    N->IsInTree = false;
-    N->OccurrenceCount = 0;
-
-    return NoOverlap;
-  }
-
-  /// \brief Find each occurrence of of a string in \p QueryString and prune
-  /// their nodes.
-  ///
-  /// \param QueryString The string to search for.
-  /// \param[out] Occurrences The start indices of each occurrence.
-  ///
-  /// \returns Whether or not the occurrence overlaps with a previous candidate.
-  bool findOccurrencesAndPrune(const std::vector<unsigned> &QueryString,
-                               std::vector<size_t> &Occurrences) {
-    size_t Dummy = 0;
-    SuffixTreeNode *N = findString(QueryString, Dummy, Root);
-
-    if (!N || !N->IsInTree)
-      return false;
-
-    // If this is an internal node, occurrences are the number of leaf children
-    // of the node.
-    for (auto &ChildPair : N->Children) {
-      SuffixTreeNode *M = ChildPair.second;
-
-      // Is it a leaf? If so, we have an occurrence.
-      if (M && M->IsInTree && M->isLeaf())
-        Occurrences.push_back(M->SuffixIdx);
-    }
-
-    // If we're in a leaf, then this node is the only occurrence.
-    if (N->isLeaf())
-      Occurrences.push_back(N->SuffixIdx);
-
-    return prune(N, QueryString.size());
-  }
-
-  /// Construct a suffix tree from a sequence of unsigned integers.
-  ///
-  /// \param Str The string to construct the suffix tree for.
-  SuffixTree(const std::vector<unsigned> &Str) : Str(Str) {
-    Root = insertInternalNode(nullptr, EmptyIdx, EmptyIdx, 0);
-    Root->IsInTree = true;
-    Active.Node = Root;
-    LeafVector.reserve(Str.size());
-
-    // Keep track of the number of suffixes we have to add of the current
-    // prefix.
-    size_t SuffixesToAdd = 0;
-    Active.Node = Root;
-
-    // Construct the suffix tree iteratively on each prefix of the string.
-    // PfxEndIdx is the end index of the current prefix.
-    // End is one past the last element in the string.
-    for (size_t PfxEndIdx = 0, End = Str.size(); PfxEndIdx < End; PfxEndIdx++) {
-      SuffixesToAdd++;
-      LeafEndIdx = PfxEndIdx; // Extend each of the leaves.
-      SuffixesToAdd = extend(PfxEndIdx, SuffixesToAdd);
-    }
-
-    // Set the suffix indices of each leaf.
-    assert(Root && "Root node can't be nullptr!");
-    setSuffixIndices(*Root, 0);
-  }
-};
-
-/// \brief An individual sequence of instructions to be replaced with a call to
-/// an outlined function.
-struct Candidate {
-
-  /// Set to false if the candidate overlapped with another candidate.
-  bool InCandidateList = true;
-
-  /// The start index of this \p Candidate.
-  size_t StartIdx;
-
-  /// The number of instructions in this \p Candidate.
-  size_t Len;
-
-  /// The index of this \p Candidate's \p OutlinedFunction in the list of
-  /// \p OutlinedFunctions.
-  size_t FunctionIdx;
-
-  Candidate(size_t StartIdx, size_t Len, size_t FunctionIdx)
-      : StartIdx(StartIdx), Len(Len), FunctionIdx(FunctionIdx) {}
-
-  Candidate() {}
-
-  /// \brief Used to ensure that \p Candidates are outlined in an order that
-  /// preserves the start and end indices of other \p Candidates.
-  bool operator<(const Candidate &RHS) const { return StartIdx > RHS.StartIdx; }
-};
-
-/// \brief The information necessary to create an outlined function for some
-/// class of candidate.
-struct OutlinedFunction {
-
-  /// The actual outlined function created.
-  /// This is initialized after we go through and create the actual function.
-  MachineFunction *MF = nullptr;
-
-  /// A number assigned to this function which appears at the end of its name.
-  size_t Name;
-
-  /// The number of times that this function has appeared.
-  size_t OccurrenceCount = 0;
-
-  /// \brief The sequence of integers corresponding to the instructions in this
-  /// function.
-  std::vector<unsigned> Sequence;
-
-  /// The number of instructions this function would save.
-  unsigned Benefit = 0;
-
-  OutlinedFunction(size_t Name, size_t OccurrenceCount,
-                   const std::vector<unsigned> &Sequence,
-                   unsigned Benefit)
-      : Name(Name), OccurrenceCount(OccurrenceCount), Sequence(Sequence),
-        Benefit(Benefit)
-        {}
-};
-
-/// \brief Maps \p MachineInstrs to unsigned integers and stores the mappings.
-struct InstructionMapper {
-
-  /// \brief The next available integer to assign to a \p MachineInstr that
-  /// cannot be outlined.
-  ///
-  /// Set to -3 for compatability with \p DenseMapInfo<unsigned>.
-  unsigned IllegalInstrNumber = -3;
-
-  /// \brief The next available integer to assign to a \p MachineInstr that can
-  /// be outlined.
-  unsigned LegalInstrNumber = 0;
-
-  /// Correspondence from \p MachineInstrs to unsigned integers.
-  DenseMap<MachineInstr *, unsigned, MachineInstrExpressionTrait>
-      InstructionIntegerMap;
-
-  /// Corresponcence from unsigned integers to \p MachineInstrs.
-  /// Inverse of \p InstructionIntegerMap.
-  DenseMap<unsigned, MachineInstr *> IntegerInstructionMap;
-
-  /// The vector of unsigned integers that the module is mapped to.
-  std::vector<unsigned> UnsignedVec;
-
-  /// \brief Stores the location of the instruction associated with the integer
-  /// at index i in \p UnsignedVec for each index i.
-  std::vector<MachineBasicBlock::iterator> InstrList;
-
-  /// \brief Maps \p *It to a legal integer.
-  ///
-  /// Updates \p InstrList, \p UnsignedVec, \p InstructionIntegerMap,
-  /// \p IntegerInstructionMap, and \p LegalInstrNumber.
-  ///
-  /// \returns The integer that \p *It was mapped to.
-  unsigned mapToLegalUnsigned(MachineBasicBlock::iterator &It) {
-
-    // Get the integer for this instruction or give it the current
-    // LegalInstrNumber.
-    InstrList.push_back(It);
-    MachineInstr &MI = *It;
-    bool WasInserted;
-    DenseMap<MachineInstr *, unsigned, MachineInstrExpressionTrait>::iterator
-    ResultIt;
-    std::tie(ResultIt, WasInserted) =
-    InstructionIntegerMap.insert(std::make_pair(&MI, LegalInstrNumber));
-    unsigned MINumber = ResultIt->second;
-
-    // There was an insertion.
-    if (WasInserted) {
-      LegalInstrNumber++;
-      IntegerInstructionMap.insert(std::make_pair(MINumber, &MI));
-    }
-
-    UnsignedVec.push_back(MINumber);
-
-    // Make sure we don't overflow or use any integers reserved by the DenseMap.
-    if (LegalInstrNumber >= IllegalInstrNumber)
-      report_fatal_error("Instruction mapping overflow!");
-
-    assert(LegalInstrNumber != DenseMapInfo<unsigned>::getEmptyKey()
-          && "Tried to assign DenseMap tombstone or empty key to instruction.");
-    assert(LegalInstrNumber != DenseMapInfo<unsigned>::getTombstoneKey()
-          && "Tried to assign DenseMap tombstone or empty key to instruction.");
-
-    return MINumber;
-  }
-
-  /// Maps \p *It to an illegal integer.
-  ///
-  /// Updates \p InstrList, \p UnsignedVec, and \p IllegalInstrNumber.
-  ///
-  /// \returns The integer that \p *It was mapped to.
-  unsigned mapToIllegalUnsigned(MachineBasicBlock::iterator &It) {
-    unsigned MINumber = IllegalInstrNumber;
-
-    InstrList.push_back(It);
-    UnsignedVec.push_back(IllegalInstrNumber);
-    IllegalInstrNumber--;
-
-    assert(LegalInstrNumber < IllegalInstrNumber &&
-           "Instruction mapping overflow!");
-
-    assert(IllegalInstrNumber !=
-      DenseMapInfo<unsigned>::getEmptyKey() &&
-      "IllegalInstrNumber cannot be DenseMap tombstone or empty key!");
-
-    assert(IllegalInstrNumber !=
-      DenseMapInfo<unsigned>::getTombstoneKey() &&
-      "IllegalInstrNumber cannot be DenseMap tombstone or empty key!");
-
-    return MINumber;
-  }
-
-  /// \brief Transforms a \p MachineBasicBlock into a \p vector of \p unsigneds
-  /// and appends it to \p UnsignedVec and \p InstrList.
-  ///
-  /// Two instructions are assigned the same integer if they are identical.
-  /// If an instruction is deemed unsafe to outline, then it will be assigned an
-  /// unique integer. The resulting mapping is placed into a suffix tree and
-  /// queried for candidates.
-  ///
-  /// \param MBB The \p MachineBasicBlock to be translated into integers.
-  /// \param TRI \p TargetRegisterInfo for the module.
-  /// \param TII \p TargetInstrInfo for the module.
-  void convertToUnsignedVec(MachineBasicBlock &MBB,
-                            const TargetRegisterInfo &TRI,
-                            const TargetInstrInfo &TII) {
-    for (MachineBasicBlock::iterator It = MBB.begin(), Et = MBB.end(); It != Et;
-         It++) {
-
-      // Keep track of where this instruction is in the module.
-      switch(TII.getOutliningType(*It)) {
-        case TargetInstrInfo::MachineOutlinerInstrType::Illegal:
-          mapToIllegalUnsigned(It);
-          break;
-
-        case TargetInstrInfo::MachineOutlinerInstrType::Legal:
-          mapToLegalUnsigned(It);
-          break;
-
-        case TargetInstrInfo::MachineOutlinerInstrType::Invisible:
-          break;
-      }
-    }
-
-    // After we're done every insertion, uniquely terminate this part of the
-    // "string". This makes sure we won't match across basic block or function
-    // boundaries since the "end" is encoded uniquely and thus appears in no
-    // repeated substring.
-    InstrList.push_back(MBB.end());
-    UnsignedVec.push_back(IllegalInstrNumber);
-    IllegalInstrNumber--;
-  }
-
-  InstructionMapper() {
-    // Make sure that the implementation of DenseMapInfo<unsigned> hasn't
-    // changed.
-    assert(DenseMapInfo<unsigned>::getEmptyKey() == (unsigned)-1 &&
-                "DenseMapInfo<unsigned>'s empty key isn't -1!");
-    assert(DenseMapInfo<unsigned>::getTombstoneKey() == (unsigned)-2 &&
-                "DenseMapInfo<unsigned>'s tombstone key isn't -2!");
-  }
-};
-
-/// \brief An interprocedural pass which finds repeated sequences of
-/// instructions and replaces them with calls to functions.
-///
-/// Each instruction is mapped to an unsigned integer and placed in a string.
-/// The resulting mapping is then placed in a \p SuffixTree. The \p SuffixTree
-/// is then repeatedly queried for repeated sequences of instructions. Each
-/// non-overlapping repeated sequence is then placed in its own
-/// \p MachineFunction and each instance is then replaced with a call to that
-/// function.
-struct MachineOutliner : public ModulePass {
-
-  static char ID;
-
-  StringRef getPassName() const override { return "Machine Outliner"; }
-
-  void getAnalysisUsage(AnalysisUsage &AU) const override {
-    AU.addRequired<MachineModuleInfo>();
-    AU.addPreserved<MachineModuleInfo>();
-    AU.setPreservesAll();
-    ModulePass::getAnalysisUsage(AU);
-  }
-
-  MachineOutliner() : ModulePass(ID) {
-    initializeMachineOutlinerPass(*PassRegistry::getPassRegistry());
-  }
-
-  /// \brief Replace the sequences of instructions represented by the
-  /// \p Candidates in \p CandidateList with calls to \p MachineFunctions
-  /// described in \p FunctionList.
-  ///
-  /// \param M The module we are outlining from.
-  /// \param CandidateList A list of candidates to be outlined.
-  /// \param FunctionList A list of functions to be inserted into the module.
-  /// \param Mapper Contains the instruction mappings for the module.
-  bool outline(Module &M, const ArrayRef<Candidate> &CandidateList,
-               std::vector<OutlinedFunction> &FunctionList,
-               InstructionMapper &Mapper);
-
-  /// Creates a function for \p OF and inserts it into the module.
-  MachineFunction *createOutlinedFunction(Module &M, const OutlinedFunction &OF,
-                                          InstructionMapper &Mapper);
-
-  /// Find potential outlining candidates and store them in \p CandidateList.
-  ///
-  /// For each type of potential candidate, also build an \p OutlinedFunction
-  /// struct containing the information to build the function for that
-  /// candidate.
-  ///
-  /// \param[out] CandidateList Filled with outlining candidates for the module.
-  /// \param[out] FunctionList Filled with functions corresponding to each type
-  /// of \p Candidate.
-  /// \param ST The suffix tree for the module.
-  /// \param TII TargetInstrInfo for the module.
-  ///
-  /// \returns The length of the longest candidate found. 0 if there are none.
-  unsigned buildCandidateList(std::vector<Candidate> &CandidateList,
-                              std::vector<OutlinedFunction> &FunctionList,
-                              SuffixTree &ST, const TargetInstrInfo &TII);
-
-  /// \brief Remove any overlapping candidates that weren't handled by the
-  /// suffix tree's pruning method.
-  ///
-  /// Pruning from the suffix tree doesn't necessarily remove all overlaps.
-  /// If a short candidate is chosen for outlining, then a longer candidate
-  /// which has that short candidate as a suffix is chosen, the tree's pruning
-  /// method will not find it. Thus, we need to prune before outlining as well.
-  ///
-  /// \param[in,out] CandidateList A list of outlining candidates.
-  /// \param[in,out] FunctionList A list of functions to be outlined.
-  /// \param MaxCandidateLen The length of the longest candidate.
-  /// \param TII TargetInstrInfo for the module.
-  void pruneOverlaps(std::vector<Candidate> &CandidateList,
-                     std::vector<OutlinedFunction> &FunctionList,
-                     unsigned MaxCandidateLen,
-                     const TargetInstrInfo &TII);
-
-  /// Construct a suffix tree on the instructions in \p M and outline repeated
-  /// strings from that tree.
-  bool runOnModule(Module &M) override;
-};
-
-} // Anonymous namespace.
-
-char MachineOutliner::ID = 0;
-
-namespace llvm {
-ModulePass *createMachineOutlinerPass() { return new MachineOutliner(); }
-}
-
-INITIALIZE_PASS(MachineOutliner, "machine-outliner",
-                "Machine Function Outliner", false, false)
-
-void MachineOutliner::pruneOverlaps(std::vector<Candidate> &CandidateList,
-                                    std::vector<OutlinedFunction> &FunctionList,
-                                    unsigned MaxCandidateLen,
-                                    const TargetInstrInfo &TII) {
-
-  // Check for overlaps in the range. This is O(n^2) worst case, but we can
-  // alleviate that somewhat by bounding our search space using the start
-  // index of our first candidate and the maximum distance an overlapping
-  // candidate could have from the first candidate.
-  for (auto It = CandidateList.begin(), Et = CandidateList.end(); It != Et;
-       It++) {
-    Candidate &C1 = *It;
-    OutlinedFunction &F1 = FunctionList[C1.FunctionIdx];
-
-    // If we removed this candidate, skip it.
-    if (!C1.InCandidateList)
-      continue;
-
-    // If the candidate's function isn't good to outline anymore, then
-    // remove the candidate and skip it.
-    if (F1.OccurrenceCount < 2 || F1.Benefit < 1) {
-      C1.InCandidateList = false;
-      continue;
-    }
-
-    // The minimum start index of any candidate that could overlap with this
-    // one.
-    unsigned FarthestPossibleIdx = 0;
-
-    // Either the index is 0, or it's at most MaxCandidateLen indices away.
-    if (C1.StartIdx > MaxCandidateLen)
-      FarthestPossibleIdx = C1.StartIdx - MaxCandidateLen;
-
-    // Compare against the other candidates in the list.
-    // This is at most MaxCandidateLen/2 other candidates.
-    // This is because each candidate has to be at least 2 indices away.
-    // = O(n * MaxCandidateLen/2) comparisons
-    //
-    // On average, the maximum length of a candidate is quite small; a fraction
-    // of the total module length in terms of instructions. If the maximum
-    // candidate length is large, then there are fewer possible candidates to
-    // compare against in the first place.
-    for (auto Sit = It + 1; Sit != Et; Sit++) {
-      Candidate &C2 = *Sit;
-      OutlinedFunction &F2 = FunctionList[C2.FunctionIdx];
-
-      // Is this candidate too far away to overlap?
-      // NOTE: This will be true in
-      //    O(max(FarthestPossibleIdx/2, #Candidates remaining)) steps
-      // for every candidate.
-      if (C2.StartIdx < FarthestPossibleIdx)
-        break;
-
-      // Did we already remove this candidate in a previous step?
-      if (!C2.InCandidateList)
-        continue;
-
-      // Is the function beneficial to outline?
-      if (F2.OccurrenceCount < 2 || F2.Benefit < 1) {
-        // If not, remove this candidate and move to the next one.
-        C2.InCandidateList = false;
-        continue;
-      }
-
-      size_t C2End = C2.StartIdx + C2.Len - 1;
-
-      // Do C1 and C2 overlap?
-      //
-      // Not overlapping:
-      // High indices... [C1End ... C1Start][C2End ... C2Start] ...Low indices
-      //
-      // We sorted our candidate list so C2Start <= C1Start. We know that
-      // C2End > C2Start since each candidate has length >= 2. Therefore, all we
-      // have to check is C2End < C2Start to see if we overlap.
-      if (C2End < C1.StartIdx)
-        continue;
-
-      // C2 overlaps with C1. Because we pruned the tree already, the only way
-      // this can happen is if C1 is a proper suffix of C2. Thus, we must have
-      // found C1 first during our query, so it must have benefit greater or
-      // equal to C2. Greedily pick C1 as the candidate to keep and toss out C2.
-      DEBUG (
-            size_t C1End = C1.StartIdx + C1.Len - 1;
-            dbgs() << "- Found an overlap to purge.\n";
-            dbgs() << "--- C1 :[" << C1.StartIdx << ", " << C1End << "]\n";
-            dbgs() << "--- C2 :[" << C2.StartIdx << ", " << C2End << "]\n";
-            );
-
-      // Update the function's occurrence count and benefit to reflec that C2
-      // is being removed.
-      F2.OccurrenceCount--;
-      F2.Benefit = TII.getOutliningBenefit(F2.Sequence.size(),
-                                           F2.OccurrenceCount
-                                           );
-
-      // Mark C2 as not in the list.
-      C2.InCandidateList = false;
-
-      DEBUG (
-            dbgs() << "- Removed C2. \n";
-            dbgs() << "--- Num fns left for C2: " << F2.OccurrenceCount << "\n";
-            dbgs() << "--- C2's benefit: " << F2.Benefit << "\n";
-            );
-    }
-  }
-}
-
-unsigned
-MachineOutliner::buildCandidateList(std::vector<Candidate> &CandidateList,
-                                    std::vector<OutlinedFunction> &FunctionList,
-                                    SuffixTree &ST,
-                                    const TargetInstrInfo &TII) {
-
-  std::vector<unsigned> CandidateSequence; // Current outlining candidate.
-  unsigned MaxCandidateLen = 0; // Length of the longest candidate.
-
-  // Function for maximizing query in the suffix tree.
-  // This allows us to define more fine-grained types of things to outline in
-  // the target without putting target-specific info in the suffix tree.
-  auto BenefitFn = [&TII](const SuffixTreeNode &Curr, size_t StringLen) {
-
-    // Any leaf whose parent is the root only has one occurrence.
-    if (Curr.Parent->isRoot())
-      return 0u;
-
-    // Anything with length < 2 will never be beneficial on any target.
-    if (StringLen < 2)
-      return 0u;
-
-    size_t Occurrences = Curr.Parent->OccurrenceCount;
-
-    // Anything with fewer than 2 occurrences will never be beneficial on any
-    // target.
-    if (Occurrences < 2)
-      return 0u;
-
-    return TII.getOutliningBenefit(StringLen, Occurrences);
-  };
-
-  // Repeatedly query the suffix tree for the substring that maximizes
-  // BenefitFn. Find the occurrences of that string, prune the tree, and store
-  // each occurrence as a candidate.
-  for (ST.bestRepeatedSubstring(CandidateSequence, BenefitFn);
-       CandidateSequence.size() > 1;
-       ST.bestRepeatedSubstring(CandidateSequence, BenefitFn)) {
-
-    std::vector<size_t> Occurrences;
-
-    bool GotNonOverlappingCandidate =
-        ST.findOccurrencesAndPrune(CandidateSequence, Occurrences);
-
-    // Is the candidate we found known to overlap with something we already
-    // outlined?
-    if (!GotNonOverlappingCandidate)
-      continue;
-
-    // Is this candidate the longest so far?
-    if (CandidateSequence.size() > MaxCandidateLen)
-      MaxCandidateLen = CandidateSequence.size();
-
-    // Keep track of the benefit of outlining this candidate in its
-    // OutlinedFunction.
-    unsigned FnBenefit = TII.getOutliningBenefit(CandidateSequence.size(),
-                                                 Occurrences.size()
-                                                 );
-
-    assert(FnBenefit > 0 && "Function cannot be unbeneficial!");
-
-    // Save an OutlinedFunction for this candidate.
-    FunctionList.emplace_back(
-        FunctionList.size(), // Number of this function.
-        Occurrences.size(),  // Number of occurrences.
-        CandidateSequence,   // Sequence to outline.
-        FnBenefit            // Instructions saved by outlining this function.
-        );
-
-    // Save each of the occurrences of the candidate so we can outline them.
-    for (size_t &Occ : Occurrences)
-      CandidateList.emplace_back(
-          Occ,                      // Starting idx in that MBB.
-          CandidateSequence.size(), // Candidate length.
-          FunctionList.size() - 1   // Idx of the corresponding function.
-          );
-
-    FunctionsCreated++;
-  }
-
-  // Sort the candidates in decending order. This will simplify the outlining
-  // process when we have to remove the candidates from the mapping by
-  // allowing us to cut them out without keeping track of an offset.
-  std::stable_sort(CandidateList.begin(), CandidateList.end());
-
-  return MaxCandidateLen;
-}
-
-MachineFunction *
-MachineOutliner::createOutlinedFunction(Module &M, const OutlinedFunction &OF,
-  InstructionMapper &Mapper) {
-
-  // Create the function name. This should be unique. For now, just hash the
-  // module name and include it in the function name plus the number of this
-  // function.
-  std::ostringstream NameStream;
-  NameStream << "OUTLINED_FUNCTION" << "_" << OF.Name;
-
-  // Create the function using an IR-level function.
-  LLVMContext &C = M.getContext();
-  Function *F = dyn_cast<Function>(
-      M.getOrInsertFunction(NameStream.str(), Type::getVoidTy(C), NULL));
-  assert(F && "Function was null!");
-
-  // NOTE: If this is linkonceodr, then we can take advantage of linker deduping
-  // which gives us better results when we outline from linkonceodr functions.
-  F->setLinkage(GlobalValue::PrivateLinkage);
-  F->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
-
-  BasicBlock *EntryBB = BasicBlock::Create(C, "entry", F);
-  IRBuilder<> Builder(EntryBB);
-  Builder.CreateRetVoid();
-
-  MachineModuleInfo &MMI = getAnalysis<MachineModuleInfo>();
-  MachineFunction &MF = MMI.getMachineFunction(*F);
-  MachineBasicBlock &MBB = *MF.CreateMachineBasicBlock();
-  const TargetSubtargetInfo &STI = MF.getSubtarget();
-  const TargetInstrInfo &TII = *STI.getInstrInfo();
-
-  // Insert the new function into the module.
-  MF.insert(MF.begin(), &MBB);
-
-  TII.insertOutlinerPrologue(MBB, MF);
-
-  // Copy over the instructions for the function using the integer mappings in
-  // its sequence.
-  for (unsigned Str : OF.Sequence) {
-    MachineInstr *NewMI =
-        MF.CloneMachineInstr(Mapper.IntegerInstructionMap.find(Str)->second);
-    NewMI->dropMemRefs();
-
-    // Don't keep debug information for outlined instructions.
-    // FIXME: This means outlined functions are currently undebuggable.
-    NewMI->setDebugLoc(DebugLoc());
-    MBB.insert(MBB.end(), NewMI);
-  }
-
-  TII.insertOutlinerEpilogue(MBB, MF);
-
-  return &MF;
-}
-
-bool MachineOutliner::outline(Module &M,
-                              const ArrayRef<Candidate> &CandidateList,
-                              std::vector<OutlinedFunction> &FunctionList,
-                              InstructionMapper &Mapper) {
-
-  bool OutlinedSomething = false;
-
-  // Replace the candidates with calls to their respective outlined functions.
-  for (const Candidate &C : CandidateList) {
-
-    // Was the candidate removed during pruneOverlaps?
-    if (!C.InCandidateList)
-      continue;
-
-    // If not, then look at its OutlinedFunction.
-    OutlinedFunction &OF = FunctionList[C.FunctionIdx];
-
-    // Was its OutlinedFunction made unbeneficial during pruneOverlaps?
-    if (OF.OccurrenceCount < 2 || OF.Benefit < 1)
-      continue;
-
-    // If not, then outline it.
-    assert(C.StartIdx < Mapper.InstrList.size() && "Candidate out of bounds!");
-    MachineBasicBlock *MBB = (*Mapper.InstrList[C.StartIdx]).getParent();
-    MachineBasicBlock::iterator StartIt = Mapper.InstrList[C.StartIdx];
-    unsigned EndIdx = C.StartIdx + C.Len - 1;
-
-    assert(EndIdx < Mapper.InstrList.size() && "Candidate out of bounds!");
-    MachineBasicBlock::iterator EndIt = Mapper.InstrList[EndIdx];
-    assert(EndIt != MBB->end() && "EndIt out of bounds!");
-
-    EndIt++; // Erase needs one past the end index.
-
-    // Does this candidate have a function yet?
-    if (!OF.MF)
-      OF.MF = createOutlinedFunction(M, OF, Mapper);
-
-    MachineFunction *MF = OF.MF;
-    const TargetSubtargetInfo &STI = MF->getSubtarget();
-    const TargetInstrInfo &TII = *STI.getInstrInfo();
-
-    // Insert a call to the new function and erase the old sequence.
-    TII.insertOutlinedCall(M, *MBB, StartIt, *MF);
-    StartIt = Mapper.InstrList[C.StartIdx];
-    MBB->erase(StartIt, EndIt);
-
-    OutlinedSomething = true;
-
-    // Statistics.
-    NumOutlined++;
-  }
-
-  DEBUG (
-    dbgs() << "OutlinedSomething = " << OutlinedSomething << "\n";
-  );
-
-  return OutlinedSomething;
-}
-
-bool MachineOutliner::runOnModule(Module &M) {
-
-  // Is there anything in the module at all?
-  if (M.empty())
-    return false;
-
-  MachineModuleInfo &MMI = getAnalysis<MachineModuleInfo>();
-  const TargetSubtargetInfo &STI = MMI.getMachineFunction(*M.begin())
-                                      .getSubtarget();
-  const TargetRegisterInfo *TRI = STI.getRegisterInfo();
-  const TargetInstrInfo *TII = STI.getInstrInfo();
-
-  InstructionMapper Mapper;
-
-  // Build instruction mappings for each function in the module.
-  for (Function &F : M) {
-    MachineFunction &MF = MMI.getMachineFunction(F);
-
-    // Is the function empty? Safe to outline from?
-    if (F.empty() || !TII->isFunctionSafeToOutlineFrom(MF))
-      continue;
-
-    // If it is, look at each MachineBasicBlock in the function.
-    for (MachineBasicBlock &MBB : MF) {
-
-      // Is there anything in MBB?
-      if (MBB.empty())
-        continue;
-
-      // If yes, map it.
-      Mapper.convertToUnsignedVec(MBB, *TRI, *TII);
-    }
-  }
-
-  // Construct a suffix tree, use it to find candidates, and then outline them.
-  SuffixTree ST(Mapper.UnsignedVec);
-  std::vector<Candidate> CandidateList;
-  std::vector<OutlinedFunction> FunctionList;
-
-  unsigned MaxCandidateLen =
-      buildCandidateList(CandidateList, FunctionList, ST, *TII);
-
-  pruneOverlaps(CandidateList, FunctionList, MaxCandidateLen, *TII);
-  return outline(M, CandidateList, FunctionList, Mapper);
-}
diff --git a/lib/CodeGen/TargetPassConfig.cpp b/lib/CodeGen/TargetPassConfig.cpp
index 42d05525198c..78c5334a654d 100644
--- a/lib/CodeGen/TargetPassConfig.cpp
+++ b/lib/CodeGen/TargetPassConfig.cpp
@@ -92,9 +92,6 @@ static cl::opt<bool> VerifyMachineCode("verify-machineinstrs", cl::Hidden,
     cl::desc("Verify generated machine code"),
     cl::init(false),
     cl::ZeroOrMore);
-static cl::opt<bool> EnableMachineOutliner("enable-machine-outliner",
-    cl::Hidden,
-    cl::desc("Enable machine outliner"));
 
 static cl::opt<std::string>
 PrintMachineInstrs("print-machineinstrs", cl::ValueOptional,
@@ -677,9 +674,6 @@ void TargetPassConfig::addMachinePasses() {
   addPass(&XRayInstrumentationID, false);
   addPass(&PatchableFunctionID, false);
 
-  if (EnableMachineOutliner)
-    PM->add(createMachineOutlinerPass());
-
   AddingMachinePasses = false;
 }
 
diff --git a/lib/Target/X86/X86InstrInfo.cpp b/lib/Target/X86/X86InstrInfo.cpp
index d3838149a0ee..383af1a8e643 100644
--- a/lib/Target/X86/X86InstrInfo.cpp
+++ b/lib/Target/X86/X86InstrInfo.cpp
@@ -10383,83 +10383,3 @@ namespace {
 char LDTLSCleanup::ID = 0;
 FunctionPass*
 llvm::createCleanupLocalDynamicTLSPass() { return new LDTLSCleanup(); }
-
-unsigned X86InstrInfo::getOutliningBenefit(size_t SequenceSize,
-                                           size_t Occurrences) const {
-  unsigned NotOutlinedSize = SequenceSize * Occurrences;
-
-  // Sequence appears once in outlined function (Sequence.size())
-  // One return instruction (+1)
-  // One call per occurrence (Occurrences)
-  unsigned OutlinedSize = (SequenceSize + 1) + Occurrences;
-
-  // Return the number of instructions saved by outlining this sequence.
-  return NotOutlinedSize > OutlinedSize ? NotOutlinedSize - OutlinedSize : 0;
-}
-
-bool X86InstrInfo::isFunctionSafeToOutlineFrom(MachineFunction &MF) const {
-  return MF.getFunction()->hasFnAttribute(Attribute::NoRedZone);
-}
-
-X86GenInstrInfo::MachineOutlinerInstrType
-X86InstrInfo::getOutliningType(MachineInstr &MI) const {
-
-  // Don't outline returns or basic block terminators.
-  if (MI.isReturn() || MI.isTerminator())
-    return MachineOutlinerInstrType::Illegal;
-
-  // Don't outline anything that modifies or reads from the stack pointer.
-  //
-  // FIXME: There are instructions which are being manually built without
-  // explicit uses/defs so we also have to check the MCInstrDesc. We should be
-  // able to remove the extra checks once those are fixed up. For example,
-  // sometimes we might get something like %RAX<def> = POP64r 1. This won't be
-  // caught by modifiesRegister or readsRegister even though the instruction
-  // really ought to be formed so that modifiesRegister/readsRegister would
-  // catch it.
-  if (MI.modifiesRegister(X86::RSP, &RI) || MI.readsRegister(X86::RSP, &RI) ||
-      MI.getDesc().hasImplicitUseOfPhysReg(X86::RSP) ||
-      MI.getDesc().hasImplicitDefOfPhysReg(X86::RSP))
-    return MachineOutlinerInstrType::Illegal;
-
-  if (MI.readsRegister(X86::RIP, &RI) ||
-      MI.getDesc().hasImplicitUseOfPhysReg(X86::RIP) ||
-      MI.getDesc().hasImplicitDefOfPhysReg(X86::RIP))
-    return MachineOutlinerInstrType::Illegal;
-
-  if (MI.isPosition())
-    return MachineOutlinerInstrType::Illegal;
-
-  for (const MachineOperand &MOP : MI.operands())
-    if (MOP.isCPI() || MOP.isJTI() || MOP.isCFIIndex() || MOP.isFI() ||
-        MOP.isTargetIndex())
-      return MachineOutlinerInstrType::Illegal;
-
-  // Don't allow debug values to impact outlining type.
-  if (MI.isDebugValue() || MI.isIndirectDebugValue())
-    return MachineOutlinerInstrType::Invisible;
-
-  return MachineOutlinerInstrType::Legal;
-}
-
-void X86InstrInfo::insertOutlinerEpilogue(MachineBasicBlock &MBB,
-                                          MachineFunction &MF) const {
-
-  MachineInstr *retq = BuildMI(MF, DebugLoc(), get(X86::RETQ));
-  MBB.insert(MBB.end(), retq);
-}
-
-void X86InstrInfo::insertOutlinerPrologue(MachineBasicBlock &MBB,
-                                          MachineFunction &MF) const {
-  return;
-}
-
-MachineBasicBlock::iterator
-X86InstrInfo::insertOutlinedCall(Module &M, MachineBasicBlock &MBB,
-                                 MachineBasicBlock::iterator &It,
-                                 MachineFunction &MF) const {
-  It = MBB.insert(It,
-                  BuildMI(MF, DebugLoc(), get(X86::CALL64pcrel32))
-                      .addGlobalAddress(M.getNamedValue(MF.getName())));
-  return It;
-}
diff --git a/lib/Target/X86/X86InstrInfo.h b/lib/Target/X86/X86InstrInfo.h
index 9e7afe36a241..c2644a35e489 100644
--- a/lib/Target/X86/X86InstrInfo.h
+++ b/lib/Target/X86/X86InstrInfo.h
@@ -545,27 +545,6 @@ class X86InstrInfo final : public X86GenInstrInfo {
 
   bool isTailCall(const MachineInstr &Inst) const override;
 
-  unsigned getOutliningBenefit(size_t SequenceSize,
-                               size_t Occurrences) const override;
-
-  bool isFunctionSafeToOutlineFrom(MachineFunction &MF) const override;
-
-  llvm::X86GenInstrInfo::MachineOutlinerInstrType
-  getOutliningType(MachineInstr &MI) const override;
-
-  bool isFixablePostOutline(MachineInstr &MI) const;
-
-  void insertOutlinerEpilogue(MachineBasicBlock &MBB,
-                              MachineFunction &MF) const override;
-
-  void insertOutlinerPrologue(MachineBasicBlock &MBB,
-                              MachineFunction &MF) const override;
-
-  MachineBasicBlock::iterator
-  insertOutlinedCall(Module &M, MachineBasicBlock &MBB,
-                     MachineBasicBlock::iterator &It,
-                     MachineFunction &MF) const override;
-
 protected:
   /// Commutes the operands in the given instruction by changing the operands
   /// order and/or changing the instruction's opcode and/or the immediate value
diff --git a/test/CodeGen/X86/machine-outliner-debuginfo.ll b/test/CodeGen/X86/machine-outliner-debuginfo.ll
deleted file mode 100644
index 26a194764086..000000000000
--- a/test/CodeGen/X86/machine-outliner-debuginfo.ll
+++ /dev/null
@@ -1,75 +0,0 @@
-; RUN: llc -enable-machine-outliner -mtriple=x86_64-apple-darwin < %s | FileCheck %s
-
-@x = global i32 0, align 4, !dbg !0
-
-define i32 @main() #0 !dbg !11 {
-  ; CHECK-LABEL: _main:
-  %1 = alloca i32, align 4
-  %2 = alloca i32, align 4
-  %3 = alloca i32, align 4
-  %4 = alloca i32, align 4
-  %5 = alloca i32, align 4
-  ; There is a debug value in the middle of this section, make sure debug values are ignored.
-  ; CHECK: callq l_OUTLINED_FUNCTION_0
-  store i32 1, i32* %2, align 4
-  store i32 2, i32* %3, align 4
-  store i32 3, i32* %4, align 4
-  call void @llvm.dbg.value(metadata i32 10, i64 0, metadata !15, metadata !16), !dbg !17
-  store i32 4, i32* %5, align 4
-  store i32 0, i32* @x, align 4, !dbg !24
-  ; This is the same sequence of instructions without a debug value. It should be outlined
-  ; in the same way.
-  ; CHECK: callq l_OUTLINED_FUNCTION_0
-  store i32 1, i32* %2, align 4
-  store i32 2, i32* %3, align 4
-  store i32 3, i32* %4, align 4
-  store i32 4, i32* %5, align 4
-  store i32 1, i32* @x, align 4, !dbg !14
-  ret i32 0, !dbg !25
-}
-
-; CHECK-LABEL: l_OUTLINED_FUNCTION_0:
-; CHECK-NOT:  .loc  {{[0-9]+}} {{[0-9]+}} {{[0-9]+}} {{^(is_stmt)}}
-; CHECK-NOT:  ##DEBUG_VALUE: main:{{[a-z]}} <- {{[0-9]+}}
-; CHECK:      movl  $1, -{{[0-9]+}}(%rbp)
-; CHECK-NEXT: movl  $2, -{{[0-9]+}}(%rbp)
-; CHECK-NEXT: movl  $3, -{{[0-9]+}}(%rbp)
-; CHECK-NEXT: movl  $4, -{{[0-9]+}}(%rbp)
-; CHECK-NEXT: retq
-
-declare void @llvm.dbg.declare(metadata, metadata, metadata) #1
-
-declare void @llvm.dbg.value(metadata, i64, metadata, metadata) #1
-
-attributes #0 = { noredzone nounwind ssp uwtable "no-frame-pointer-elim"="true" }
-
-!llvm.dbg.cu = !{!2}
-!llvm.module.flags = !{!7, !8, !9}
-!llvm.ident = !{!10}
-
-!0 = !DIGlobalVariableExpression(var: !1)
-!1 = distinct !DIGlobalVariable(name: "x", scope: !2, file: !3, line: 2, type: !6, isLocal: false, isDefinition: true)
-!2 = distinct !DICompileUnit(language: DW_LANG_C99, file: !3, producer: "clang version 5.0.0", isOptimized: false, runtimeVersion: 0, emissionKind: FullDebug, enums: !4, globals: !5)
-!3 = !DIFile(filename: "debug-test.c", directory: "dir")
-!4 = !{}
-!5 = !{!0}
-!6 = !DIBasicType(name: "int", size: 32, encoding: DW_ATE_signed)
-!7 = !{i32 2, !"Dwarf Version", i32 4}
-!8 = !{i32 2, !"Debug Info Version", i32 3}
-!9 = !{i32 1, !"PIC Level", i32 2}
-!10 = !{!"clang version 5.0.0"}
-!11 = distinct !DISubprogram(name: "main", scope: !3, file: !3, line: 4, type: !12, isLocal: false, isDefinition: true, scopeLine: 4, flags: DIFlagPrototyped, isOptimized: false, unit: !2, variables: !4)
-!12 = !DISubroutineType(types: !13)
-!13 = !{!6}
-!14 = !DILocation(line: 7, column: 4, scope: !11)
-!15 = !DILocalVariable(name: "a", scope: !11, file: !3, line: 5, type: !6)
-!16 = !DIExpression()
-!17 = !DILocation(line: 5, column: 6, scope: !11)
-!18 = !DILocalVariable(name: "b", scope: !11, file: !3, line: 5, type: !6)
-!19 = !DILocation(line: 5, column: 9, scope: !11)
-!20 = !DILocalVariable(name: "c", scope: !11, file: !3, line: 5, type: !6)
-!21 = !DILocation(line: 5, column: 12, scope: !11)
-!22 = !DILocalVariable(name: "d", scope: !11, file: !3, line: 5, type: !6)
-!23 = !DILocation(line: 5, column: 15, scope: !11)
-!24 = !DILocation(line: 14, column: 4, scope: !11)
-!25 = !DILocation(line: 21, column: 2, scope: !11)
diff --git a/test/CodeGen/X86/machine-outliner.ll b/test/CodeGen/X86/machine-outliner.ll
deleted file mode 100644
index 9246348c563e..000000000000
--- a/test/CodeGen/X86/machine-outliner.ll
+++ /dev/null
@@ -1,110 +0,0 @@
-; RUN: llc -enable-machine-outliner -mtriple=x86_64-apple-darwin < %s | FileCheck %s
-
-@x = global i32 0, align 4
-
-define i32 @check_boundaries() #0 {
-  ; CHECK-LABEL: _check_boundaries:
-  %1 = alloca i32, align 4
-  %2 = alloca i32, align 4
-  %3 = alloca i32, align 4
-  %4 = alloca i32, align 4
-  %5 = alloca i32, align 4
-  store i32 0, i32* %1, align 4
-  store i32 0, i32* %2, align 4
-  %6 = load i32, i32* %2, align 4
-  %7 = icmp ne i32 %6, 0
-  br i1 %7, label %9, label %8
-
-  ; CHECK: callq l_OUTLINED_FUNCTION_1
-  ; CHECK: cmpl  $0, -{{[0-9]+}}(%rbp)
-  store i32 1, i32* %2, align 4
-  store i32 2, i32* %3, align 4
-  store i32 3, i32* %4, align 4
-  store i32 4, i32* %5, align 4
-  br label %10
-
-  store i32 1, i32* %4, align 4
-  br label %10
-
-  %11 = load i32, i32* %2, align 4
-  %12 = icmp ne i32 %11, 0
-  br i1 %12, label %14, label %13
-
-  ; CHECK: callq l_OUTLINED_FUNCTION_1
-  store i32 1, i32* %2, align 4
-  store i32 2, i32* %3, align 4
-  store i32 3, i32* %4, align 4
-  store i32 4, i32* %5, align 4
-  br label %15
-
-  store i32 1, i32* %4, align 4
-  br label %15
-
-  ret i32 0
-}
-
-define i32 @empty_1() #0 {
-  ; CHECK-LABEL: _empty_1:
-  ; CHECK-NOT: callq l_OUTLINED_FUNCTION_{{[0-9]+}}
-  ret i32 1
-}
-
-define i32 @empty_2() #0 {
-  ; CHECK-LABEL: _empty_2
-  ; CHECK-NOT: callq l_OUTLINED_FUNCTION_{{[0-9]+}}
-  ret i32 1
-}
-
-define i32 @no_empty_outlining() #0 {
-  ; CHECK-LABEL: _no_empty_outlining:
-  %1 = alloca i32, align 4
-  store i32 0, i32* %1, align 4
-  ; CHECK-NOT: callq l_OUTLINED_FUNCTION_{{[0-9]+}}
-  %2 = call i32 @empty_1() #1
-  %3 = call i32 @empty_2() #1
-  %4 = call i32 @empty_1() #1
-  %5 = call i32 @empty_2() #1
-  %6 = call i32 @empty_1() #1
-  %7 = call i32 @empty_2() #1
-  ret i32 0
-}
-
-define i32 @main() #0 {
-  ; CHECK-LABEL: _main:
-  %1 = alloca i32, align 4
-  %2 = alloca i32, align 4
-  %3 = alloca i32, align 4
-  %4 = alloca i32, align 4
-  %5 = alloca i32, align 4
-
-  store i32 0, i32* %1, align 4
-  store i32 0, i32* @x, align 4
-  ; CHECK: callq l_OUTLINED_FUNCTION_0
-  store i32 1, i32* %2, align 4
-  store i32 2, i32* %3, align 4
-  store i32 3, i32* %4, align 4
-  store i32 4, i32* %5, align 4
-  store i32 1, i32* @x, align 4
-  ; CHECK: callq l_OUTLINED_FUNCTION_0
-  store i32 1, i32* %2, align 4
-  store i32 2, i32* %3, align 4
-  store i32 3, i32* %4, align 4
-  store i32 4, i32* %5, align 4
-  ret i32 0
-}
-
-attributes #0 = { noredzone nounwind ssp uwtable "no-frame-pointer-elim"="true" }
-
-; CHECK-LABEL: l_OUTLINED_FUNCTION_0:
-; CHECK:      movl  $1, -{{[0-9]+}}(%rbp)
-; CHECK-NEXT: movl  $2, -{{[0-9]+}}(%rbp)
-; CHECK-NEXT: movl  $3, -{{[0-9]+}}(%rbp)
-; CHECK-NEXT: movl  $4, -{{[0-9]+}}(%rbp)
-; CHECK-NEXT: retq
-
-; CHECK-LABEL: l_OUTLINED_FUNCTION_1:
-; CHECK:      movl  $1, -{{[0-9]+}}(%rbp)
-; CHECK-NEXT: movl  $2, -{{[0-9]+}}(%rbp)
-; CHECK-NEXT: movl  $3, -{{[0-9]+}}(%rbp)
-; CHECK-NEXT: movl  $4, -{{[0-9]+}}(%rbp)
-; CHECK-NEXT: retq