forked from theEricMa/OTAvatar
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinference_refine_1D_cam.py
260 lines (209 loc) · 11.6 KB
/
inference_refine_1D_cam.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
import os
import cv2
import argparse
import numpy as np
from tqdm import tqdm
import torch
from torch.nn import functional as F
from traitlets import default
from util.logging import init_logging, make_logging_dir
from util.distributed import init_dist
from util.trainer import gen_model_optimizer_4_warping_n_inversion, set_random_seed, get_trainer_4_warping_n_inversion
from util.distributed import master_only_print as print
from config import Config
from time import time
def parse_args():
parser = argparse.ArgumentParser(description='Training')
parser.add_argument('--config', default='./config/face.yaml')
parser.add_argument('--name', default=None)
parser.add_argument('--checkpoints_dir', default='result',
help='Dir for saving logs and models.')
parser.add_argument('--seed', type=int, default=0, help='Random seed.')
parser.add_argument('--cross_id', action='store_true')
parser.add_argument('--cross_id_target', default=None, help = 'the target identity to render')
parser.add_argument('--which_iter', type=int, default=None)
parser.add_argument('--no_resume', action='store_true')
parser.add_argument('--local_rank', type=int, default=0)
parser.add_argument('--single_gpu', action='store_true')
parser.add_argument('--output_dir', type=str)
parser.add_argument('--multi_view', type=bool, default=False, help = 'whether to perform multi-view test')
parser.add_argument('--cam_optim', type=bool, default=False, help = 'whether to optimize camera poses')
parser.add_argument('--image_size', type=int, default=256)
parser.add_argument('--with_gt', type=int, default=True)
parser.add_argument('--ws_per_frame', action='store_true')
parser.add_argument('--ws_plus', action='store_true')
parser.add_argument('--pti', action='store_true')
parser.add_argument('--debug', action='store_true')
parser.add_argument('--rotate', action='store_true')
parser.add_argument('--fps', action='store_true')
args = parser.parse_args()
return args
def write2video(results_dir, *video_list):
cat_video=None
for video in video_list:
video_numpy = video[:,:3,:,:].cpu().float().detach().numpy()
video_numpy = (np.transpose(video_numpy, (0, 2, 3, 1)) + 1) / 2.0 * 255.0
video_numpy = video_numpy.astype(np.uint8)
cat_video = np.concatenate([cat_video, video_numpy], 2) if cat_video is not None else video_numpy
image_array=[]
for i in range(cat_video.shape[0]):
image_array.append(cat_video[i])
out_name = results_dir+'.mp4'
_, height, width, layers = cat_video.shape
size = (width,height)
out = cv2.VideoWriter(out_name, cv2.VideoWriter_fourcc(*'mp4v'), 15, size)
for i in range(len(image_array)):
out.write(image_array[i][:,:,::-1])
out.release()
if __name__ == '__main__':
args = parse_args()
set_random_seed(args.seed)
opt = Config(args.config, args, is_train=False)
if not args.single_gpu:
opt.local_rank = args.local_rank
init_dist(opt.local_rank)
opt.device = torch.cuda.current_device()
# create a visualizer
date_uid, logdir = init_logging(opt)
opt.logdir = logdir
make_logging_dir(logdir, date_uid)
# create a dataset
opt.data.cross_id = args.cross_id
opt.data.cross_id_target = args.cross_id_target
if args.multi_view:
# TODO: add multi-view dataset
raise NotImplementedError
# from data.multiface_video_dataset_inv_fix_target import MultifaceVideoDataset
# dataset = MultifaceVideoDataset(opt.data, is_inference=True)
else:
if args.cross_id_target is not None:
assert args.cross_id
from data.hdtf_cross_id import HDTFVideoDataset
else:
from data.dataset import HDTFVideoDataset
dataset = HDTFVideoDataset(opt.data, is_inference=True)
# create a model
net_Warp, net_Warp_ema, opt_Warp, sch_Warp, net_G, net_G_warp, opt_G, sch_G \
= gen_model_optimizer_4_warping_n_inversion(opt)
# change iterations
trainer = get_trainer_4_warping_n_inversion(opt, net_Warp, net_Warp_ema, opt_Warp, sch_Warp, net_G, net_G_warp, opt_G, sch_G, None)
current_epoch, current_iteration = trainer.load_checkpoint(
opt, args.which_iter)
trainer.net_Warp_ema.eval()
trainer.net_G_ema.eval()
output_dir = os.path.join(
args.output_dir,
'epoch_{:05}_iteration_{:09}'.format(current_epoch, current_iteration)
)
os.makedirs(output_dir, exist_ok=True)
for video_index in tqdm(range(dataset.__len__())):
data = dataset.load_next_video()
name = data['video_name']
output_images, gt_images= [],[]
for frame_index, idx in enumerate(tqdm(range(len(data['target_semantics'])))):
if frame_index > 50 and args.debug:
break
target_semantic = data['target_semantics'][frame_index][None].cuda()
target_condition = data['target_conditions'][frame_index][None].cuda()
target_image = data['target_image'][frame_index][None].cuda()
target_keypoint = data['target_keypoint'][frame_index][None].cuda()
if args.rotate: # if specified, used rotation camera poses
from util.camera_utils import LookAtPoseSampler
N = len(data['target_conditions'])
pitch_range = 0.50
yaw_range = 0.50
frames_period = 100
cam2world_pose = LookAtPoseSampler.sample(
3.14/2 + yaw_range * np.sin(2 * 3.14 * frame_index / frames_period),
3.14/2 -0.05 + pitch_range * np.cos(2 * 3.14 * frame_index / frames_period),
torch.tensor(trainer.net_G_ema.rendering_kwargs['avg_camera_pivot']),
radius=trainer.net_G_ema.rendering_kwargs['avg_camera_radius'],
).to(target_condition)
target_condition[..., :16] = cam2world_pose.reshape(-1, 16)
if (frame_index == 0 and not args.ws_per_frame) or args.ws_per_frame:
source_semantic = data['source_semantics'][None].cuda()
source_condition = data['source_conditions'][None].cuda()
source_image = data['source_image'][None].cuda()
source_keypoint = data['source_keypoint'][None].cuda()
opt_Ws, w_opt, w_std = trainer.inverse_setup(1,)
w_opt, intri_bias, trans_bias, _ = trainer.inverse_optimize(
source_image, source_semantic, source_condition, source_keypoint, opt_Ws, w_opt, w_std,
use_ema=True,
sr_iters = opt.trainer.sr_iters if hasattr(opt.trainer, 'sr_iters') else opt.trainer.inversion.iterations,
)
if args.ws_plus:
opt_Ws, w_opt, w_std = trainer.inverse_setup(1, ws = w_opt)
w_opt, intri_bias, trans_bias, _ = trainer.inverse_optimize(
source_image, source_semantic, source_condition, source_keypoint, opt_Ws, w_opt, w_std,
use_ema=True,
sr_iters = opt.trainer.sr_iters if hasattr(opt.trainer, 'sr_iters') else opt.trainer.inversion.iterations,
intri_bias = intri_bias,
trans_bias = trans_bias
)
if args.pti:
net_G, intri_bias, trans_bias, = trainer.net_G_optimize(source_image, source_semantic, source_condition, source_keypoint, opt_Ws, w_opt, w_std,
use_ema = True,
sr_iters = opt.trainer.sr_iters if hasattr(opt.trainer, 'sr_iters') else opt.trainer.inversion.iterations,
intri_bias = intri_bias,
trans_bias = trans_bias,
max_iters = 50
)
else:
net_G = trainer.net_G_ema
if frame_index == 0 and args.cam_optim:
# this ws should not be used !
# take note that the grad of w_opt has been detached here!
w_opt.requires_grad = False # just to make sure
# _opt_Ws, _w_opt, _w_std = trainer.inverse_setup(1,)
_, intri_bias, trans_bias, _ = trainer.inverse_optimize(
target_image, target_semantic, target_condition, target_keypoint, opt_Ws, w_opt, w_std,
use_ema=True, #if_optmize_translation = True,
sr_iters = opt.trainer.sr_iters if hasattr(opt.trainer, 'sr_iters') else opt.trainer.inversion.iterations,
)
start = time()
with torch.no_grad():
ws_scaling, ws_trans, alpha = trainer.net_Warp_ema(target_semantic)
ws_scaling = ws_scaling + 1 if ws_scaling is not None else 1
ws_trans = ws_trans * trainer.ws_stdv.to(w_opt)
# source_semantic = data['target_semantics'][0][None].cuda()
# ws_scaling_s, ws_trans_s, alpha_s = trainer.net_Warp_ema(source_semantic)
# import pdb; pdb.set_trace()
planes = net_G.before_planes(w_opt * ws_scaling + ws_trans, noise_mode = 'const')
output_dict = net_G.render_from_planes(
trainer.add_bias(target_condition, intri_bias, trans_bias),
planes,
neural_rendering_resolution = trainer.opt.trainer.neural_rendering_resolution if hasattr(trainer.opt.trainer, 'neural_rendering_resolution') else 64)
predict_images_res, predict_feature_res = output_dict['image'], output_dict['image_feature']
output_dict = net_G.sr(predict_images_res, predict_feature_res, w_opt * ws_scaling + ws_trans)
end = time()
if output_dict['image'].shape[-1] != args.image_size:
output_dict['image'] = F.interpolate(output_dict['image'], size = (args.image_size, ) * 2, mode='area')
if args.fps:
fps = 1 / (end - start)
text = 'FPS:{}'.format(int(fps))
pred = output_dict['image'].cpu().clamp_(-1, 1)
pred_numpy = (((pred[0].permute([1,2,0]) + 1) / 2) * 255).numpy().astype(np.uint8)
pred_numpy = cv2.cvtColor(pred_numpy, cv2.COLOR_RGB2BGR)
H, W = pred_numpy.shape[:2]
orig = (int(0.55 * W), int(0.1 * H))
fontScale= H // 256
thickness= W // 256
pred_numpy = cv2.putText(img = pred_numpy, text = text, org = orig, fontFace=cv2.FONT_HERSHEY_TRIPLEX, color = (0, 244, 0), fontScale=fontScale, thickness=thickness)
# cv2.imwrite('wasted/fps.png', pred_numpy)
pred_numpy = cv2.cvtColor(pred_numpy, cv2.COLOR_BGR2RGB)
pred = (torch.from_numpy(pred_numpy) / 255 * 2 - 1).permute([2,0,1])[None, ...].to(output_dict['image'])
output_images.append(pred)
else:
output_images.append(
output_dict['image'].cpu().clamp_(-1, 1)
)
gt_images.append(
data['target_image'][frame_index][None]
)
gen_images = torch.cat(output_images, 0)
gt_images = torch.cat(gt_images, 0)
if args.with_gt:
write2video("{}/{}".format(output_dir, name), gt_images, gen_images)
else:
write2video("{}/{}".format(output_dir, name), gt_images)
print("write results to video {}/{}".format(output_dir, name))