forked from THUDM/ChatGLM2-6B
-
Notifications
You must be signed in to change notification settings - Fork 0
/
evaluate_ceval.py
60 lines (52 loc) · 2.52 KB
/
evaluate_ceval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
import os
import glob
import re
import json
import torch
import torch.utils.data
from transformers import AutoTokenizer, AutoModel
from tqdm import tqdm
tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm2-6b", trust_remote_code=True)
model = AutoModel.from_pretrained("THUDM/chatglm2-6b", trust_remote_code=True).bfloat16().cuda()
choices = ["A", "B", "C", "D"]
choice_tokens = [tokenizer.encode(choice, add_special_tokens=False)[0] for choice in choices]
def build_prompt(text):
return "[Round {}]\n\n问:{}\n\n答:".format(1, text)
extraction_prompt = '综上所述,ABCD中正确的选项是:'
accuracy_dict, count_dict = {}, {}
with torch.no_grad():
for entry in glob.glob("./CEval/val/**/*.jsonl", recursive=True):
dataset = []
with open(entry, encoding='utf-8') as file:
for line in file:
dataset.append(json.loads(line))
correct = 0
dataloader = torch.utils.data.DataLoader(dataset, batch_size=8)
for batch in tqdm(dataloader):
texts = batch["inputs_pretokenized"]
queries = [build_prompt(query) for query in texts]
inputs = tokenizer(queries, padding=True, return_tensors="pt", truncation=True, max_length=2048).to('cuda')
outputs = model.generate(**inputs, do_sample=False, max_new_tokens=512)
intermediate_outputs = []
for idx in range(len(outputs)):
output = outputs.tolist()[idx][len(inputs["input_ids"][idx]):]
response = tokenizer.decode(output)
intermediate_outputs.append(response)
answer_texts = [text + intermediate + "\n" + extraction_prompt for text, intermediate in
zip(texts, intermediate_outputs)]
input_tokens = [build_prompt(answer_text) for answer_text in answer_texts]
inputs = tokenizer(input_tokens, padding=True, return_tensors="pt", truncation=True, max_length=2048).to('cuda')
outputs = model(**inputs, return_last_logit=True)
logits = outputs.logits[:, -1]
logits = logits[:, choice_tokens]
preds = logits.argmax(dim=-1)
correct += (preds.cpu() == batch["label"]).sum().item()
accuracy = correct / len(dataset)
print(entry, accuracy)
accuracy_dict[entry] = accuracy
count_dict[entry] = len(dataset)
acc_total, count_total = 0.0, 0
for key in accuracy_dict:
acc_total += accuracy_dict[key] * count_dict[key]
count_total += count_dict[key]
print(acc_total / count_total)