-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata_pool.py
407 lines (348 loc) · 16.2 KB
/
data_pool.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
from typing import List
from copy import deepcopy
import pdb
from collections import defaultdict, namedtuple
import numpy
from torch.utils.data import Dataset, DataLoader
import json
import os
from pprint import pprint
from dataset.answer_cleaner import AnswerCleaner
import time, random
import shutil
class DataPool:
def __init__(self,
tree_tokens, n_extra_tokens, min_score=0.0, max_score=1.0,
):
self.tree_tokens = tree_tokens
self.n_extra_tokens = n_extra_tokens
self.prompt_pool, self.response_pool, self.score_pool, self.cat_tokens = [], [], [], []
self.min_score = min_score
self.max_score = max_score
def add(self, prompts: List[str], responses: List[str], scores: List[float], **kwargs):
self.prompt_pool.extend(prompts)
self.response_pool.extend(responses)
self.score_pool.extend(scores)
sorted_data = sorted(zip(self.prompt_pool, self.response_pool, self.score_pool),
key=lambda x: x[-1], reverse=True)
self.prompt_pool, self.response_pool, self.score_pool = [list(x) for x in list(zip(*sorted_data))]
self.valid_indexes = list(range(len(self.prompt_pool)))
# get the min and max from the score pool and create bins according to the score
bin_interval = (self.max_score - self.min_score) / self.n_extra_tokens
bins = [self.min_score + bin_interval * (i + 1) for i in range(self.n_extra_tokens)] # e.g., interval = 0.2 and n_extra_tokens = 5, bins = [0.2, 0.4, 0.6, 0.8, 1.0]
score_binned = numpy.digitize(self.score_pool, bins)
self.cat_tokens = [self.tree_tokens[i] for i in score_binned]
def filter(self, lower_threshold):
self.valid_indexes = []
for i in range(len(self.score_pool)):
if self.score_pool[i] >= lower_threshold:
self.valid_indexes.append(i)
def __getitem__(self, index):
valid_index = self.valid_indexes[index]
result = {
'query': self.prompt_pool[valid_index],
'response': self.response_pool[valid_index],
'cat_tokens': self.cat_tokens[valid_index],
'score': self.score_pool[valid_index]
}
return result
def __len__(self):
return len(self.valid_indexes)
@classmethod
def from_dict(cls, data_dict: dict):
tree_tokens = data_dict['tree_tokens']
n_extra_tokens = data_dict['n_extra_tokens']
min_score = data_dict['min_score']
max_score = data_dict['max_score']
data_pool = cls(tree_tokens, n_extra_tokens, min_score, max_score)
data_pool.add(data_dict['prompts'], data_dict['responses'], data_dict['scores'])
return data_pool
def to_dict(self):
return {
'tree_tokens': self.tree_tokens,
'n_extra_tokens': self.n_extra_tokens,
'min_score': self.min_score,
'max_score': self.max_score,
'prompts': self.prompt_pool,
'responses': self.response_pool,
'scores': self.score_pool,
'cat_tokens': self.cat_tokens
}
def get_rationale_and_answer(self, index):
prompt = self.prompt_pool[index]
response = self.response_pool[index]
cat_tokens = self.cat_tokens[index]
score = self.score_pool[index]
return prompt, response, cat_tokens, score
class DataPoolWithIndex:
def __init__(self,
tree_tokens,
n_extra_tokens,
min_score=0.0,
max_score=1.0,
use_index = False,
):
self.tree_tokens = tree_tokens
self.n_extra_tokens = n_extra_tokens
self.prompt_pool, self.response_pool, self.score_pool, self.cat_tokens, self.index_pool = [], [], [], [], []
self.min_score = min_score
self.max_score = max_score
def add(self, prompts: List[str], responses: List[str], scores: List[float], indexes: List[int], **kwargs):
self.prompt_pool.extend(prompts)
self.response_pool.extend(responses)
self.score_pool.extend(scores)
self.index_pool.extend(indexes)
sorted_data = sorted(zip(self.prompt_pool, self.response_pool, self.score_pool, self.index_pool),
key=lambda x: x[-1], reverse=True)
self.prompt_pool, self.response_pool, self.score_pool, self.index_pool = [list(x) for x in list(zip(*sorted_data))]
self.valid_indexes = [i for i in range(len(self.score_pool))]
# get the min and max from the score pool and create bins according to the score
bin_interval = (self.max_score - self.min_score) / self.n_extra_tokens
bins = [self.min_score + bin_interval * (i + 1) for i in range(self.n_extra_tokens)] # e.g., interval = 0.2 and n_extra_tokens = 5, bins = [0.2, 0.4, 0.6, 0.8, 1.0]
score_binned = numpy.digitize(self.score_pool, bins)
# this assumes uniform distribution?
cat_pos = [[i] * (len(sorted_data) // self.n_extra_tokens) for i in range(self.n_extra_tokens)]
cat_pos = [y for x in cat_pos for y in x]
cat_pos = cat_pos + [self.n_extra_tokens - 1] * (len(sorted_data) - len(cat_pos))
self.cat_tokens = [self.tree_tokens[i] for i in score_binned]
def advanced_filter(self, lower_threshold, strategy_name):
# strategy 1: one correct path per example
if strategy_name == 'one_correct_path':
self.valid_indexes = []
index_filled = set()
for i in range(len(self.score_pool)):
original_dataset_index = self.index_pool[i]
if original_dataset_index in index_filled:
continue
if self.score_pool[i] >= lower_threshold:
self.valid_indexes.append(i)
index_filled.add(original_dataset_index)
# stratey 2: all correct paths per example
elif strategy_name == 'all_correct_paths':
self.valid_indexes = []
for i in range(len(self.score_pool)):
if self.score_pool[i] >= lower_threshold:
self.valid_indexes.append(i)
def __getitem__(self, index):
valid_index = self.valid_indexes[index]
true_dataset_index = self.index_pool[valid_index] # this is the index of the original dataset
_, x, y = self.dataset[true_dataset_index]
result = {
'query': x,
'response': self.response_pool[valid_index],
'cat_tokens': self.cat_tokens[valid_index],
'score': self.score_pool[valid_index],
"indexes": self.index_pool[valid_index]
}
return result
def __len__(self):
return len(self.valid_indexes)
def get_indexes_mapping(self):
index_groups = defaultdict(list) # original_dataset_index -> xxx
for index in range(len(self.index_pool)):
index_groups[self.index_pool[index]].append(index)
return index_groups
def get_data_by_original_dataset_index(self, index_groups, original_index, cap_token = 500):
return_results = []
for inspect_index in index_groups[original_index]:
result = {
'query': self.prompt_pool[inspect_index][-cap_token:],
'response': self.response_pool[inspect_index],
'score': self.score_pool[inspect_index]
}
return_results.append(result)
return return_results
@classmethod
def from_dict(cls, data_dict: dict):
tree_tokens = data_dict['tree_tokens']
n_extra_tokens = data_dict['n_extra_tokens']
min_score = data_dict['min_score']
max_score = data_dict['max_score']
data_pool = cls(tree_tokens, n_extra_tokens, min_score, max_score)
data_pool.add(data_dict['prompts'], data_dict['responses'], data_dict['scores'], data_dict['indexes'])
return data_pool
def to_dict(self):
return {
'tree_tokens': self.tree_tokens,
'n_extra_tokens': self.n_extra_tokens,
'min_score': self.min_score,
'max_score': self.max_score,
'prompts': self.prompt_pool,
'responses': self.response_pool,
'scores': self.score_pool,
'cat_tokens': self.cat_tokens,
'indexes': self.index_pool
}
def parse_to_rationale(self):
pass
class DataPoolWithIndexV2:
def __init__(self,
):
self.examples = []
def add(self, prompts: List[str], responses: List[str], scores: List[float], indexes: List[int], rationales, **kwargs):
for i in range(len(prompts)):
self.examples.append({
'prompt': prompts[i],
'response': responses[i],
'score': scores[i],
'index': indexes[i],
'rationale': rationales[i]
})
self.valid_indexes = [i for i in range(len(self.examples))]
def advanced_filter(self, lower_threshold, strategy_name):
self.strategy_name = strategy_name
# strategy 1: one correct path per example
if strategy_name == 'one_correct_path' or strategy_name == "one_correct_path_no_rationel" or strategy_name == "all_correct_paths_balanced":
self.valid_indexes = []
self.index_filled = set()
for i in range(len(self.examples)):
original_dataset_index = self.examples[i]["index"]
if original_dataset_index in self.index_filled:
continue
if self.examples[i]["score"] >= lower_threshold:
self.valid_indexes.append(i)
self.index_filled.add(original_dataset_index)
# stratey 2: all correct paths per example
elif strategy_name == 'all_correct_paths':
self.valid_indexes = []
for i in range(len(self.examples)):
if self.examples[i]["score"] >= lower_threshold:
self.valid_indexes.append(i)
self.get_indexes_mapping()
def get_indexes_mapping(self):
self.index_groups = defaultdict(list) # original_dataset_index -> current dataset index
for index in range(len(self.examples)):
self.index_groups[self.examples[index]["index"]].append(index)
def __getitem__(self, index):
valid_index = self.valid_indexes[index]
example = self.examples[valid_index]
true_dataset_index = example['index'] # this is the index of the original dataset
_, x, y = self.dataset[true_dataset_index]
if self.strategy_name == 'one_correct_path_no_rationel':
response = y + "\n\n" # a bit of a hack to mark the end of generation
elif self.strategy_name == 'all_correct_paths_balanced':
good_indexes = self.index_groups[true_dataset_index]
good_indexes = [i for i in good_indexes if self.examples[i]["score"] >= 0.5]
assert(valid_index in good_indexes)
# reset random seed with time
random.seed(time.time())
good_index = random.choice(good_indexes)
response = self.examples[good_index]["response"]
else:
response = example["response"]
# if we used prompt source; we need to override the response
if self.dataset.dataset_cfg.USE_PROMPT_SOURCE:
rationale = example["rationale"]
response = rationale + self.dataset.dataset_cfg.ANSWER_PREFIX + y
result = {
'query': x,
'response': response,
'score': example["score"],
"index": example["index"],
"rationale": example["rationale"]
}
return result
def __len__(self):
return len(self.valid_indexes)
@classmethod
def from_dict(cls, data_dict: dict):
data_pool = cls()
data_pool.examples = data_dict
return data_pool
def to_dict(self):
return self.examples
DataPoolID = namedtuple("DataPoolID", ['model_name', 'dataset_name', 'run_name', 'additional'])
class MultipleDataPools():
def __init__(self, file_name = None, datasets = None, with_index = False, version = "v1"):
# we will maintain this pool across runs
if file_name is None:
print("Not using data pools")
return
self.pools = {}
self.file_name = file_name
self.with_index = with_index
self.version = version
self.load_from_file(datasets)
def load_from_file(self, datasets=None):
if not os.path.exists(self.file_name):
return
with open(self.file_name, 'r') as f:
pools = json.load(f)
keys = list(pools.keys())
# sort
keys.sort()
for index, key in enumerate(keys):
if self.version == "v2":
self.pools[key] = DataPoolWithIndexV2.from_dict(pools[key])
self.pools[key].dataset = datasets[index]
elif self.with_index:
self.pools[key] = DataPoolWithIndex.from_dict(pools[key])
self.pools[key].dataset = datasets[index]
else:
self.pools[key] = DataPool.from_dict(pools[key])
def form_dataset(self, theshold, limit_size = -1, filter_strategy = "all_correct_paths", **kwargs):
pools = []
for pool_id in self.pools:
pool_id_tuple = self.id_str_to_tuple(pool_id)
if all([getattr(pool_id_tuple, key) == kwargs[key] for key in kwargs]):
pools.append(self.pools[pool_id])
print("Using pool {} from {}".format(pool_id, self.file_name))
self.total_length = 0
self.lengths_record = []
for pool in pools:
pool.advanced_filter(theshold, filter_strategy)
self.total_length += len(pool)
self.lengths_record.append(self.total_length)
self.data_pools_in_use = pools
if limit_size > 0:
self.total_length = limit_size
print("\nDatapool final total length for training:\n {}".format(self.total_length))
return self
def __len__(self):
return self.total_length
def __getitem__(self, idx):
# determine which pool the idx belongs to
for i, length in enumerate(self.lengths_record):
if idx < length:
pool = self.data_pools_in_use[i]
correct_index = idx - (self.lengths_record[i-1] if i != 0 else 0)
break
# get the data from the pool
return pool[correct_index]
@staticmethod
def collate_fn(batch):
queries = [seq['query'] for seq in batch]
responses = [seq['response'] for seq in batch]
# cat_tokens = [seq['cat_tokens'] for seq in batch]
scores = [seq['score'] for seq in batch]
return queries, responses, scores
@staticmethod
def id_str_to_tuple(id_str):
model_name, dataset_name, run_name, additional = id_str.split("*")
return DataPoolID(model_name, dataset_name, run_name, additional)
@staticmethod
def tuple_to_id_str(pool_id):
return "*".join([pool_id.model_name, pool_id.dataset_name, pool_id.run_name, pool_id.additional])
def add_onepool(self, model_name, dataset_name, run_name, additional, pool):
pool_id = "*".join([model_name, dataset_name, str(run_name), additional])
self.pools[pool_id] = pool
def check_pool_exists(self, model_name, dataset_name, run_name, additional):
pool_id = "*".join([model_name, dataset_name, str(run_name), additional])
return pool_id in self.pools
def purge(self, **kwargs):
assert("test" in self.file_name) # only purge test data pools
pool_ids = list(self.pools.keys())
for pool_id in pool_ids:
pool_id_tuple = self.id_str_to_tuple(pool_id)
if all([getattr(pool_id_tuple, key) == kwargs[key] for key in kwargs]): # get rid of the pool
del self.pools[pool_id]
def dump_to_file(self):
# turn every pool into dict
if os.path.exists(self.file_name):
# make a copy just incase
shutil.copy(self.file_name, self.file_name + ".bak")
pools = {}
for key in self.pools:
pools[key] = self.pools[key].to_dict()
with open(self.file_name, 'w') as f:
json.dump(pools, f)