forked from apache/mxnet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
config.mk
121 lines (95 loc) · 3.13 KB
/
config.mk
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
#-------------------------------------------------------------------------------
# Template configuration for compiling mxnet
#
# If you want to change the configuration, please use the following
# steps. Assume you are on the root directory of mxnet. First copy the this
# file so that any local changes will be ignored by git
#
# $ cp make/config.mk .
#
# Next modify the according entries, and then compile by
#
# $ make
#
# or build in parallel with 8 threads
#
# $ make -j8
#-------------------------------------------------------------------------------
#---------------------
# choice of compiler
#--------------------
export CC = gcc
export CXX = g++
export NVCC = nvcc
# whether compile with debug
DEBUG = 0
# the additional link flags you want to add
ADD_LDFLAGS =
# the additional compile flags you want to add
ADD_CFLAGS =
#---------------------------------------------
# matrix computation libraries for CPU/GPU
#---------------------------------------------
# whether use CUDA during compile
USE_CUDA = 0
# add the path to CUDA library to link and compile flag
# if you have already add them to environment variable, leave it as NONE
# USE_CUDA_PATH = /usr/local/cuda
USE_CUDA_PATH = NONE
# whether use CuDNN R3 library
USE_CUDNN = 0
# whether use cuda runtime compiling for writing kernels in native language (i.e. Python)
USE_NVRTC = 0
# whether use opencv during compilation
# you can disable it, however, you will not able to use
# imbin iterator
USE_OPENCV = 1
# use openmp for parallelization
USE_OPENMP = 1
# choose the version of blas you want to use
# can be: mkl, blas, atlas, openblas
# in default use atlas for linux while apple for osx
UNAME_S := $(shell uname -s)
ifeq ($(UNAME_S), Darwin)
USE_BLAS = apple
else
USE_BLAS = atlas
endif
# add path to intel library, you may need it for MKL, if you did not add the path
# to environment variable
USE_INTEL_PATH = NONE
# If use MKL, choose static link automatically to allow python wrapper
ifeq ($(USE_BLAS), mkl)
USE_STATIC_MKL = 1
else
USE_STATIC_MKL = NONE
endif
#----------------------------
# distributed computing
#----------------------------
# whether or not to enable multi-machine supporting
USE_DIST_KVSTORE = 0
# whether or not allow to read and write HDFS directly. If yes, then hadoop is
# required
USE_HDFS = 0
# path to libjvm.so. required if USE_HDFS=1
LIBJVM=$(JAVA_HOME)/jre/lib/amd64/server
# whether or not allow to read and write AWS S3 directly. If yes, then
# libcurl4-openssl-dev is required, it can be installed on Ubuntu by
# sudo apt-get install -y libcurl4-openssl-dev
USE_S3 = 0
#----------------------------
# additional operators
#----------------------------
# path to folders containing projects specific operators that you don't want to put in src/operators
EXTRA_OPERATORS =
#----------------------------
# plugins
#----------------------------
# whether to use torch integration. This requires installing torch.
# TORCH_PATH = $(HOME)/torch
# MXNET_PLUGINS += plugin/torch/torch.mk
# whether to use sframe integration. This requires build sframe
# [email protected]:dato-code/SFrame.git
# SFRAME_PATH = $(HOME)/SFrame
# MXNET_PLUGINS += plugin/sframe/plugin.mk